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Water security has become an increasing concern for many water system managers due to climate change and
increased population. In order to improve the security of supply, alternative sources such as harvested stormwater,
recycled wastewater and desalination are becoming more commonly used. This brings about the need for tools
to analyze and optimize systems that use such sources, which are generally more complex than traditional water
systems. Previous methodologies have been limited in their scope and cannot be applied to all types of water
sources and systems. The framework presented in this paper has been developed for holistic analysis and
optimization of water supply and distribution systems that use alternative water sources. It includes both design
and operational decision variables, water and energy infrastructure, simulation of systems, analysis of constraints
and objectives, as well as policies and regulations which may affect any of these factors. This framework will
allow users to develop a comprehensive analysis and/or optimization of their water supply system, taking into
account multiple types of water sources and consumers, the effect of their own design and operational decisions,
and the impact of government policies and different energy supply options. Two case study systems illustrate the
application of the framework; the first case study is a harvested stormwater system that is used to demonstrate
the importance of simulation and analysis prior to optimization, the second utilizes four different water sources to
increase security of supply and was optimized to reduce pump energy use.

Keywords: Water distribution systems, Integrated water resources management, Decision-making, Conceptual

Introduction

A changing climate and increasing population have put
a strain on traditional water resources, which typically
rely on natural catchment water. This has made water
security an increasing concern for many water system
managers, who have investigated options for reducing
demand and supplementing supply. Alternative water
sources, such as harvested stormwater, recycled waste-
water and desalination, are increasingly being used to
improve water security of cities and towns. Methods
for simulation, analysis and optimization of traditional
potable water distribution systems (WDSs) cannot
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necessarily be directly transferred to systems that use
alternative water sources. Therefore there is a need to
develop a methodology specifically for alternative water
source systems, which includes both hydraulic and
hydrologic considerations, as well as the many additional
parameters and variables associated with alternative
water sources. There are many modelling tools used in
current practice for integrated water management, such
as eWater Source, WEAP (Water Evaluation and Plan-
ning System) and Mike Basin. These modelling tools do
not include hydraulic simulation, and therefore may not
accurately represent performance of urban water net-
works. Moreover, this framework is not software, rather
its purpose is to guide water system managers in how to
best simulate and optimize their systems, particularly
those that integrate multiple water sources, and natural
and human-made systems. The framework should be
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used to determine which system components need to
be modelled, which type of modelling tools are most
appropriate, what regulations and policies need to be
taken into account and how to evaluate the perform-
ance of the system.

The framework introduced in this paper can be ap-
plied to the optimization of the design and operation
of water supply and distribution systems from source
to consumer, considering multiple traditional and alter-
native sources, multiple uses and multiple objectives.
Electrical energy sources and their effect on electricity
prices and greenhouse gas (GHG) emissions are in-
cluded, as are several types of government policies that
may affect the design, operation, data and evaluation of
the system. The objectives of this paper are to (1)
develop a generalized framework that could be applied
to any water supply and/or distribution system
optimization problem and (2) outline the application of
this framework to two case study systems with a focus
on optimizing their operation.

Literature review

Since 2000, there has been significant consideration of
the concept of water security (Cook and Bakker 2012)
as water is increasingly seen as a fundamental and finite
resource (Bogardi et al. 2012). Consequently, the use of
alternative sources, such as harvested stormwater,
desalination, recycled wastewater and rainwater, has
gained traction (Fielding et al. 2015). Harvested storm-
water schemes are often decentralized and used for non-
potable supply such as household gardening and irriga-
tion of public reserves (Naylor et al. 2012), however, in
some cases are also used for potable supply (McArdle et
al. 2011). While desalination is a climate independent
(and therefore more reliable) source, is often not the
most cost effective or environmentally sensitive option
(Becker et al. 2010; Miller et al. 2015). Recycled waste-
water is also climate independent, and generally used for
large scale non-potable applications (Muga and Mihelcic
2008; Oron et al. 2014), however, it can also be used for
indirect or direct potable supply (Rodriguez et al. 2009;
Nagal 2015). Domestic rainwater tanks are increasing in
popularity and have benefits of reducing water usage
from utilities and reducing stormwater runoff from
houses (Campisano and Modic 2012; Umapathi et al.
2013). Demand management strategies have also been
used to reduce per capita consumption and therefore re-
duce the pressure on limited water supplies (Dawadi and
Ahmad 2013; Friedman et al. 2014).

Some alternative sources, such as harvested storm-
water, introduce additional complexity to the problem
of modeling and optimization than has been previously
considered for traditional water systems (Marchi et al.
2016). There is, for example, the need to consider the
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supply and distribution systems together, rather than
separately, as it is less likely that there will be large
storages isolating the supply side from the distribution
side. When including the supply side, longer simula-
tion times often need to be used, requiring rainfall and
evaporation scenarios to be taken into account. The
security of supply with regard to climate change needs
to be considered (Paton et al. 2014; Cai et al. 2015), as
some sources are climate dependent and some are cli-
mate independent. The social acceptability of using
particular sources for particular applications and the
willingness of consumers to pay more for alternative
source systems to be constructed and maintained may
need to be incorporated (Hwang et al. 2006; Londofio
Cadavid and Ando 2013; Fielding et al. 2015). The
perception of risks associated with alternative water
source systems by water system managers may also
present a barrier to the implementation and success of
such systems (Dobbie and Brown 2012; West et al.
2016). Many alternative sources also have associated
externalities that result in either cost or benefit to the
user, such as reduced effluent flow to the ocean or re-
ceiving water body by reusing wastewater and reduced
urban stream flows by harvesting stormwater (Marchi
et al. 2016).

The increased use of alternative water sources then
raises the question of how such systems should by ana-
lyzed and optimized to ensure they are implemented as
effectively as possible. Stokes et al. (2014) developed a
framework for optimizing the cost and GHG emissions
of WDSs, taking into account both the design and op-
eration of the system, energy sources and GHG emis-
sion factors. This study, however, was applicable only
to traditional WDSs, with no consideration of the sup-
ply side and alternative water sources. Chung et al.
(2008) developed a mathematical model for evaluating
integrated water supply systems with decentralized
treatments. Multiple sources, uses, transportation and
treatment systems can be considered, however only
surface water, groundwater and recycled wastewater
sources are included. This model does not incorporate
any optimization procedure, only analysis of different
options developed by the user. Makropoulos et al. (2008),
with further developments in Rozos and Makropoulos
(2013), produced a decision-support tool for modeling
the urban water system from source to tap. The soft-
ware can be used to select combinations of water sav-
ing strategies and technologies, including how much
water from each type of demand (for example domes-
tic, commercial) is obtained from each source and how
the system is operated. It uses a demand-oriented,
water balance approach and does not include capability
for other types of simulation models such as hydraulic
and hydrologic modeling.
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Uncertainty, particularly with regard to climate
change, is an important consideration that has been
taken into account in several methodologies. Paton et al.
(2014) developed a framework for water supply system
planning with alternative sources and climate change
considerations, while Beh et al. (2014, 2015) developed
two methods for optimal sequencing of urban water
supply augmentation options under deep uncertainty
regarding demands and climate. The research by both
Paton et al. (2014) and Beh et al. (2014, 2015) consid-
ered only the planning of water supply projects, and did
not optimize the specific design or operation of the sys-
tems. Sequencing is also considered in Cai et al. (2015),
however, in this case it is applied to planning of drought
mitigation strategies in agricultural systems. They con-
sider multiple decision stages in which options such as
infiltration ponds, parallel terraces, irrigation triggering
threshold and irrigation water sources can be imple-
mented. Marchi et al. (2016) developed a methodology
for optimizing the design of harvested stormwater
systems taking into account future climate scenarios;
however, it does not apply to other types of alternative
sources or optimization of system operation. It does in-
clude a detailed analysis of the associated externalities,
such as reduced peak flows and improved economic
value of properties near stormwater schemes. Ashbolt et
al. (2014) introduced a framework for planning of short-
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term operations for water systems using surface water,
groundwater, desalination, and recycled wastewater
with multiple objectives and multiple inflow replicates
to account for uncertainty. Long-term operating strat-
egies and the design of the system were not included
and the operating strategies considered were limited to
bulk water transfers and not the operation of pumps
and smaller storages.

Framework for the optimization of alternative
water source systems

The framework presented in the current paper was de-
veloped to guide the modeling and optimization of water
supply and distribution systems that use alternative
water sources. It is comprised of several components
and sub-components that fit within an optimization
structure, for example, a multi-objective evolutionary
algorithm (Fig. 1). The options component [OPT] de-
scribes the potential ‘decision variables’ that are avail-
able in an optimization problem, that is, the factors
that can be changed in order to produce a different
outcome. This includes both the initial design of the
water supply and distribution infrastructure and the
long- and short-term rules that govern the operation of
the system once it has been commissioned. The infra-
structure component [INF] describes the physical com-
ponents of the system that need to be modeled and the

I

OPERATION DECISIONS SUB-COMPONENT [O]

DESIGN DECISIONS SUB-COMPONENT [D]

GOVERNMENT
POLICY
COMPONENT [G J

[LdO] INANOJINOD
SNOILdO

*S.C. = Sub-Component

Pump schedules, tank trigger levels, SHORT-TERM Decisions for: (2 TREATMENT | | WATER = FIT- FOR,
irrigation schedules OPERATIONS ]{fc"c‘;‘g‘: f TRAIN [ SOURCE(S) PURPOSE USE i
Volumetric allocation, triggers for LONG-TERM Centralised DELIVERY [®* WATER > =
allocation, seasonal switch times J_’ ‘ OPERATIONS peconigived SYSTEM(S) USE(S) WATER SOURCE <«
LICENCES - =2
ENVIRONMEN- E g
TAL FLOWS
WATER SYSTEM INFRASTRUCTURE SUB-COMPONENT [W] - g g
DISCOUNT
Qs ‘RAINFALL/H\IFLOVA ‘ PUMP \E‘ ‘ PIPE SIZEMW ‘DEMAND\E( RATE g =
ENARIOS
2 _sc w0 CHARACTERISTICS & MATERIAL SCENARIOS CMATE & Sz
= E ' =
= > . A ENERGY POLICY ﬁ =
Sz SO =
URCE| & TREAT- o=
% ; | \RAW WATER MENT ELECTRICAL ENERGY o6
Zz C ’/ i) INFRASTRUCTURE F &
=aq RS SUB-COMPONENT [P} ==
—_ = Natural catchment /] \ : (@)
= Harvested stormwater Q”@ omesti TARIFF || GHG EMISSION 2
=i Recycled wastewater — migation STRUCTURE FACTORS [ =
— = Groundwater Indusma.l 5 * 6 o
Imported water [wa] May be in multiple stages Commercial |, > =
POWER SOURCE 2z
" FOSSIL FUELS / 1
8 N CONSTRUCTION COST RENEWABLES
2 2 ! | ELECTRICITY COST [/
=N ‘ HYDROLOGICJ ‘ Mass [ ‘ HYDRAULICJ Y
% :E SIMULATOR BALANCE SIMULATOR CONSTRAINTS || Life-cycle economic cost, W
= ¥ v EVALUATION spill, life-cycle GHGs, water
Z =< CONSTRAINTS STORAGE POWER % quality, reliability ]
= Z INFORMATION | |WATER LEVEL USAGE Pressure, velocity SOLUTION
T : lenv. flow, yield [|[OBJECTIVE FUNCTION(S) ] SPACE
SIMULATION SUB-COMPONENT [S
g IS EVALUATION SUB-COMPONENT [E]

Fig. 1 Schematic of the framework for optimizing the design and operation of alternative water source systems
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data associated with each, including both water infra-
structure and energy infrastructure, which may affect
the evaluation of electrical energy cost and life-cycle
GHG emissions. There is also a government policy
component [G] that covers the policies from regulating
bodies that may affect other aspects of the framework.
The analysis component [ANL] describes the simulation
of each potential system configuration and evaluation
against objectives and constraints. The optimization al-
gorithm [OA] investigates different possible combina-
tions of decision variables from the options component,
models the system according to the infrastructure com-
ponent and evaluates it using the analysis component to
find the optimal solution(s).

Details of the components and sub-components are
shown in Fig. 1 and described in Sections ‘Options
component [OPT], ‘Infrastructure component [INF],
‘Government policy component [G]" and ‘Analysis com-
ponent [ANL]. Table 1 summarizes the parameters that
need to be considered in the optimization and simula-
tion of alternative water source systems with respect to
the different items that are presented in Fig. 1 and in the
following sections. There are three (non-exclusive) cat-
egories that each parameter may be placed in — decision
variables, parameters that are set, and uncertain parame-
ters. Decision variables are parameters that the user may
be able to examine using optimization. It is important to
note that in most optimization problems, not all of these
parameters will be available as decision variables at once,
and it is likely that only a small number will be consid-
ered. For example, when optimizing pump operations
for an irrigation system, only the first three ‘decision var-
iables” shown in Table 1 (pump schedules, tank trigger
levels, and demand scheduling) may be considered. The
remaining parameters that are designated as decision
variables in Table 1, particularly those relating to the de-
sign of the system (for example, delivery system layout
and pump sizing) would already be set and not able to
be optimized if the existing infrastructure cannot be
modified. The parameters that are set are those that very
rarely, if ever, are able to be optimized by the user.
These include parameters that would be controlled by
external sources, for example consumers of domestic or
commercial demands, pipe manufacturers and higher
level government and regulatory bodies; and also param-
eters that need to be predefined to a known or assumed
value before optimization or simulation can be per-
formed, for example, fire demand/reserve, hydrologic/
hydraulic variables and objective and constraint selection
and definition. The final category, uncertainty, desig-
nates those externally set or predefined variables that are
not well known or may be subject to change in the fu-
ture and therefore may need to be considered in a sensi-
tivity analysis. While the selected values of decision
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variables have an impact on the performance of a sys-
tem, they are generally within the control of the decision
maker, and therefore are not classed as ‘uncertain’. It is
important to note that the categorization in this table
is indented as an indication of how each parameter is
typically treated. There are, of course, exceptions to
this, as almost all of the parameters could be consid-
ered as decision variables if desired and have some as-
sociated uncertainty. For example, environmental flows
have been designated as an externally set parameter, as
it is likely that the operator of a system will have to
meet requirements set by an external organization
such as the Environmental Protection Agency. They
may, however, want to investigate providing greater
environmental flows, or show the benefits of reducing
their environmental flow requirements and being able
to supply more water elsewhere.

Options component [OPT]

The options component covers the potential decision
variables (and the range of possible choices for the deci-
sion variables) for an optimization problem. This com-
ponent is split into two sub-components; the operational
decisions sub-component [O] and the design decisions
sub-component [D]. Design decisions include elements
that can be changed before a system is constructed, such
as the layout and capacities, materials and other proper-
ties of the various infrastructure components. Oper-
ational decisions include elements that can be changed
after construction during the daily management of the
system, such as the operating rules for pumps and valves
and allocation of water from different sources.

Operational decisions Sub-component [O]

Both short- and long-term operations are considered in
the operational decisions sub-component. The critical
aspects of this sub-component (items in bold can be op-
timized), as shown in Fig. 1 and Table 1 are:

[O1] the specific short term operating strategies
including pump schedules (when pumps are
turned on or off based on time), trigger levels
(water levels in tanks or other storages that
determine when pumps or valves turn on or off),
irrigation or demand schedules (for systems
where they can be pre-determined), valve settings
and operating rules, and pressure settings
for pumps (to maintain the set pressure at a
particular point).

[O2] the specific long term operating strategies including
volumetric allocation of water from different
alternative sources, trigger levels (for example in
reservoirs) that determine allocations from different
sources or water demand restriction levels, switch



Blinco et al. Earth Perspectives (2017) 4:3 Page 5 of 26

Table 1 Summary of parameters for the design and operation of alternative water source systems

Parameter Decision Parameter Uncertain Relevant items
variable® that is set parameter in Fig. 1

Operational inputs [O]

Pump schedule X o1

Tank trigger levels X 01

Tank/storage maximum and minimum allowable levels X 01, W3, W11

Demand pattern (irrigation, agriculture) X 01, D4, W13

Demand pattern (domestic, commercial, industrial) X X 01, D4, W13

Demand flow rate (peak, average, peak day) X X 01, D4, W14

Valve settings or operating rules X O1

Pump pressure settings X o1

Volumetric allocation of water X 02

Reservoir trigger levels X 02

Switch time between operating regimes X 02

Priority ranking of operating rules X 03, 04
Design inputs [D] and water infrastructure [W]

Water source selection X D1, W2

Water source infrastructure (layout, capacity) X D1, W2

Treatment type selection X D2, W8

Treatment infrastructure (layout, capacity, treatment rate/level) X D2, W8

Delivery system type selection X D3

Delivery system layout (lengths, elevations, junctions, tank locations) X D3, W7, W10, W12, W15

Pipe material and diameters X D3, W7, W10, W12

Pipe parameters (unit cost, pipe wall roughness (g), X X (e) D3, W6, W7, W10, W12

wall thickness, embodied energy)

Pump sizing X D3, W5, W9

Pump performance characteristics and cost X D3, w4

Tank sizing (capacity, height, diameter) X D3, W3, W11

Fire demand/reserve X D3, W11

Water user type selection X D4

Rainfall/streamflow series X X W1

Reservoir capacity and volume curve X W3

Pond (e.g. wetland) capacity and volume curve X W3

Prioritization rules for demands types X W15

Other inputs [P], [G] and [S]

Power source selection X P1, P3, G5
Electricity tariff structure and cost X P2

GHG emission factors X P3, G5
Fit-for-purpose requirements X G1

Water license amounts X G2
Environmental flow amounts X G3
Discount rate X X G4
Hydrologic variables (e.g. permeability) X S1
Hydraulic variables (e.g. water temperature) X S3
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Table 1 Summary of parameters for the design and operation of alternative water source systems (Continued)

Optimization problem formulation [E]
Objective selection
Objective function(s)
Constraint selection
Constraint limits (maximum and minimum)

Penalty costs

X ET
X E2
X E3
X E4
X E4

“Note: Parameters specified as decision variables are shown in bold throughout Sections 'Options component [OPT] and ‘Infrastructure component [INF]'

times between different operating regimes (for
example between different trigger level sets for
different seasons) and power source selection.

[O3] the overall short-term operating strategy, including
operating rules that are optimized in [O1] and
operating rules that are pre-set and are not to be
optimized (acting as constraints). Where there
are multiple operating rules, the priority of each
rule and order they are enforced in is important
to consider.

[O4] the overall long-term operating strategy, including
operating rules that are optimized in [O2] and
operating rules that are pre-set and are not to be
optimized. Again, the priority and order of the
rules is important to consider.

Most systems have multiple operating conditions to
meet and therefore multiple operating rules will be in
place. Prioritization of the different operating rules is
important, and this may be set by the operator or be
chosen by the optimization tool. This component re-
quires information from the government policy sub-
component ([G] in Fig. 1), specifically in terms of water
source licensing and environmental flow regulations.
These policies would typically be regulated by local or
state government departments or the environmental
protection authority. Operational rules set in this sub-
component will inform the simulation sub-component
[S] as they will need to be represented in any simula-
tion model(s) of the system.

Design decisions Sub-component [D]

This sub-component incorporates all of the design deci-
sions that are available to the designer for the entire water
supply and distribution system, from source to user. The
critical aspects of this sub-component (items in bold can
be optimized), as shown in Fig. 1 and Table 1 are:

[D1] the water sources selected to be used including
natural catchments, harvested stormwater,
recycled wastewater, groundwater, imported
water, domestic rainwater, desalination, domestic
greywater and sewer mining; and the layout and
capacity of source infrastructure.

[D2] the types of treatment selected including
centralized treatment at plants such as mechanical
filtration, chemical dosing, ultraviolet treatment and
ozonation, and decentralized in situ treatments such
as gross pollutant traps, wetlands and biofilters; and
the layout, capacity, dosing rates and retention
times for treatment facilities.

[D3] the type and configuration of the delivery
system used including potable, non-potable (for
example dual reticulation systems to deliver
recycled water), centralized and decentralized,
and the infrastructure design variables such as
system layout, pipe sizes, lengths and materials,
pump sizing, valve sizing, and tank sizing.

[D4] the types of water users that are supplied by the
system including potable, irrigation, agriculture,
industrial, non-potable domestic/commercial and
firefighting, and the demand rate and pattern for
water use (for example, scheduling of irrigation
demands).

Regulations on fit-for-purpose water use from the
government policy component [G] in Fig. 1 inform what
water sources can be used for particular applications
and these are likely to be specified by state or federal
government departments or health authorities. Gener-
ally, sources such as harvested stormwater and recycled
wastewater cannot be used for potable supply and ra-
ther serve non-potable demands in dual-reticulation
systems or are supplied to irrigation, agricultural and
industrial users. There may be some systems, however,
in which necessary approvals have been obtained to use
these sources for potable supply. The design decisions
are inputs to the water system infrastructure sub-
component [W] which describes the system elements
and data to be modeled.

Infrastructure component [INF]

The purpose of this component is to describe the infra-
structure that needs to be modeled in order to evaluate
the objectives and constraints of the problem. There are
two sub-components; the water system infrastructure
sub-component [W] and the electrical energy infrastruc-
ture sub-component [P]. Water system infrastructure



Blinco et al. Earth Perspectives (2017) 4:3

includes the specific aspects of the water supply and dis-
tribution system and the data required, including con-
struction and maintenance costs. Electrical energy
infrastructure includes the power source (fossil fuel
types and renewable types) and the electricity price and
GHG emission factor data needed.

Water system infrastructure Sub-component [W]

This sub-component includes the specific infrastructure
aspects of the water system design and the relevant data
that is needed in order to simulate it. Most systems and
optimization problems will not require all of these fac-
tors to be considered or modeled; however, the purpose
of this framework is to cover a large range of the pos-
sible requirements for an optimization and hence the
scope is intentionally broad.

The water system infrastructure sub-component [W] as
shown in Fig. 1 represents a system with one water source,
one treatment plant, one storage tank and one demand
node. In reality, many systems will have more than one of
each of these components, particularly the treated storage
[W11] and demand node [W15]. Pumping of water be-
tween storages may occur in multiple stages, particularly
when there is a large difference in elevation. For typical
centralized potable WDSs, all treatment will occur at one
water treatment plant. In decentralized systems such as
for harvested stormwater schemes, however, treatment
may occur in multiple stages. For example, a gross pollu-
tant trap may be located on an urban creek before the
water is collected in a harvest pond, then the water may
be pumped to be treated through a wetland, and then
treated again in a treatment plant.

The critical aspects of this sub-component (items in
bold can be optimized) as shown in Fig. 1 and Table 1 are:

[W1] the rainfall or inflow scenarios for the water
source; for example rainfall or streamflow
scenarios for natural catchments and stormwater
sources, or a sewer system flow pattern for
recycled wastewater. Sources such as desalination
and, depending on the temporal scale of the
optimization, groundwater, do not usually
require an inflow scenario. Rainfall and
streamflow scenarios may be a data series
obtained from measurements at gauging stations
or modeled in a hydrologic simulation program
[S1]. Multiple inflow scenarios may be used,
particularly for systems with highly variable
inflows. Losses such as evaporation and
infiltration may also need to be taken into
account for sources with large open storages
such as reservoirs and natural water ways.

[W2] the source type as described in [D1] with input
from [W1].
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[W3] the raw water storage; this may be a reservoir
(typical for a natural catchment), a harvest
pond for a stormwater system, a tank (for
example for a recycled wastewater system) or
an aquifer for groundwater. Associated data
including capacity, a volume curve, elevation,
height and diameter is required.

[W4] characteristics of available pumps such as
performance curves (head, efficiency, and power
against flow), cost, rated speed and variable speed
pump (VSP) information where applicable.

[W5] the pump transferring water from the raw
water storage to a treatment facility, requiring
data from [W4].

[W6] pipe size and material information such as
available diameters, unit costs, pipe wall
roughness, wall thickness and embodied energy.
For new pipes, this information will be easily
obtained from the pipe manufacturer. For existing
systems, however, there may be some uncertainty
in these parameters if detailed records of the ‘as
constructed’ system and any pipe replacements
have not been kept. In addition to this, the pipe
wall roughness of existing pipes will generally be
uncertain. Pipe wall roughness increase as pipes
age, and pipe condition assessment may be needed
to provide an estimate.

[W7] the pipe system transferring water from the raw
water storage to the treatment facility, pipe
lengths and layouts need to be known as well
as information from [W6].

[W8] the treatment facility that will produce water
of the required quality based on the source
type and demand type. Characteristics of the
individual treatment methods as described in
[D2] need to be known.

[W9] the pump transferring water to a treated storage,
requiring the same data as [W5].

[W10]the pipe system transferring water to a treated
storage, with the same information as [W7]
required.

[W11]the treated storage, for example, a tank or
multiple tanks that are typically at a high
elevation point of the network in order to
supply demands by gravity. Data required
includes the elevation, height, diameter and
maximum and minimum allowable water levels.

[W12]the pipe system transferring water from the
treated storage to consumers, which again
requires information as in [W7]. This pipe
system is likely to be more complex than those
in [W7] and [W10], particularly for systems with
many different demand nodes. For systems with
only one source of water, [W7] and [W10] are
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likely to be single pipelines. For decentralized
systems with only one specific consumer, [W12]
will also most likely be a single pipeline. Most
systems, however, have much more than one
demand point and as such distribution systems
are often looped or branched systems that require
more complex analysis than single pipelines.

[W13]demand scenarios that will be applied to the
demand nodes, consisting of a pattern of demand
multipliers over a day, week or year. There may be
multiple demand scenarios required for a system,
for example, if there are different types of demand
nodes (such as domestic, commercial, industrial)
or different seasonal demands.

[W14]the peak demand is the demand rate that is
typically used to size the system components
and so will affect the design of the system. The
demand scenarios [W13] are more likely to
affect the operation of the system as the demand
varies over the simulation time. The peak day
demand (average demand over the peak day),
the peak hour demand (the average demand
over the hour with maximum consumption in
the peak day) and average demand rates may
also be required. Fire loading demands and other
emergency conditions will affect the design of
the system, for example storage tanks should be
sized to be able to provide demand in the case
of fires, other emergencies and system failures
(e.g. if the supply to the tank is cut off).

[W15]the demand nodes for the consumers, these may
be different types of users as described in [D4]
and require information from [W13] and [W14].
Different types of users will have different demand
rates [W14] and demand patterns [W13]. When
simulating the system, an average demand rate
will often be used with the demand pattern,
rather than the peak demand. Systems with
multiple demand nodes may prioritize different
types of demands over other, for example,
irrigation systems using non-potable water may
prioritize high profile sport fields over reserves
with no formal usage.

Choices made in the optimization of the design deci-
sions sub-component [D] in Fig. 1 will be inputs to the
water system infrastructure sub-component. There may
be other parameters that are not decision variables in
the optimization (as differentiated in Table 1) though are
still required by this sub-component in order to simulate
the system. The construction and maintenance costs of
each of the infrastructure components needs to be
known in order to calculate the initial construction cost
and ongoing costs as part of life-cycle economic costing.
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Information collected through this sub-component will be
input to the simulation sub-component [S] depending on
the types of simulation models used and to the evaluation
sub-component [E] through the construction cost or other
factors calculated for the specific objectives of a problem.

Electrical energy infrastructure Sub-component [P]
The electrical energy infrastructure sub-component in-
cludes any power infrastructure that affects the electricity
prices and GHG emission factors. The critical aspects of
this sub-component as shown in Fig. 1 and Table 1 are:
[P1] the breakdown of power sources including fossil
fuel sources such as coal and oil, and renewable
sources such as solar, wind and hydrothermal.
the electricity price tariff structure, which may
be a peak and off-peak structure, or multi-part
(more than two price levels) and could include a
peak demand charge which applies to the peak
electricity power usage in each month.
the GHG emission factor, which is based on the
power source breakdown [P1] and may vary with
time, either in the short-term (with sources that
do not have storage such as solar panels and
wind turbines) or the long-term (as fossil fuel
sources tend to be phased out and renewable
sources become more popular).

(P2]

(P3]

Climate and energy policy [G5] in the government
policy component in Fig. 1 will affect the power source
breakdown and electrical energy pricing now and into
the future. This is likely to be regulated by a federal
government department or body. Information from this
sub-component is used to calculate electrical energy
costs in order to evaluate life-cycle economic costs and
also to calculate life-cycle GHG emissions in the evalu-
ation sub-component [E].

Government policy component [G]

The government policy component covers policies by
regulating bodies at any level (local, state, federal) that
may affect other aspects of the framework. These policies
need to be considered over the operational life-span of the
system, for example, climate and energy policy may affect
future energy sources and therefore affect future GHG
emissions. The critical aspects of this component as
shown in Fig. 1 and Table 1 are:

[G1] fit-for-purpose water use, which may be regulated
by state or federal governments or health agencies
and affects which water sources [D1] and water
uses [D4] can be combined in the design decisions
sub-component. It may also guide which design
decisions (for example, treatment) are appropriate.
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[G2] water source licenses, which may be regulated by
local or state governments or the environmental
protection agency, depending on the catchment
size, and will affect the amount of water
available from particular sources for allocation in
long-term operations [O4].

environmental flows, which similarly to water
source licenses may be regulated by local or state
bodies depending on the size of the catchment
and affect the amount of water available for
allocations [O4].

the discount rate applied to operational costs and
GHG emissions in life-cycle analysis [E1]. This

is unlikely to be set by a government body and
rather will be informed from outside the decision
making team, generally by recommendations from
economists.

climate and energy policy set by state and
federal governments will affect the energy
sources available now and in the future,
therefore affecting GHG emission factors and
any GHG objectives [P].

(G3]

(G4]

(G5]

Analysis component [ANL]

The analysis component uses information from the op-
tions, infrastructure and government policy components
to simulate the system and evaluate how it performs
relative to the objectives and constraints. Within an
optimization algorithm, the analysis component is used
to assess multiple combinations of decision variables
from the options component to determine how they
perform. There are two sub-components within the
analysis component; the simulation sub-component [S]
and the evaluation sub-component [E]. The simulation
sub-component includes the modeling aspects of the
problem and the key variables that are required to be
output from the models in order to evaluate the system.
Optimization objectives and constraints are defined in
the evaluation sub-component, which also provides in-
formation to the optimization algorithm as to which of
the potential solutions perform best.

Simulation Sub-component [S]

The simulation sub-component considers the type of
simulation model that is most applicable to the particu-
lar system and problem, and specifies the key variables
that need to be calculated in the model(s). The critical
aspects of this sub-component as shown in Fig. 1 and
Table 1 are:

[S1] the hydrologic simulator, which is required if
rainfall scenarios need to be transformed to
streamflow, typically for systems using natural
catchment water or harvested stormwater.
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the mass balance model, which may be required
for systems that have multiple water sources
with long-term allocation decisions, particularly
if there are different rainfall and evaporation
scenarios to be considered for the storages.

the WDS hydraulic simulator, which is required
to analyze pump and pipe systems that transfer
water between different storages and treatments
and to consumers.

information on constraints, such as yield from a
hydrologic model, environmental releases and
system reliability from a mass balance model,
and nodal pressures, pipe velocities, pump
switches and tank levels from a hydraulic model.
the water levels in storages, which are
important particularly when considering
operational decisions, such as trigger levels,
and for constraints, such as system reliability.
the power usage from any pumps or treatment
facilities, which are important in informing the
ongoing electrical energy costs as part of life-cycle
economic costing. Generally a WDS hydraulic
simulator is required to model detailed pump
operations and therefore accurately estimate the
pump power usage.

Each of the three types of models will require different
simplifications or assumptions depending on the par-
ticular system. For example, mass balance modeling will
generally only consider one pump operating point so
may not accurately calculate the pump power usage.
When deciding which type of model to use for a particu-
lar problem, the user will need to consider the different
simplifications, assumptions, advantages and disadvan-
tages of each model. Trade-offs between accuracy of out-
puts and simulation run times need to be considered.
For example, when optimizing both short- and long-
term operations of a system, there is likely to be a trade-
off between using a hydraulic simulator for detailed
hydraulic information and using a mass balance model
for shorter run times. Most problems may ideally use
elements from more than one type of model; however,
using multiple models will increase computational com-
plexity and run times. Wherever possible, the most
applicable type of model should be selected and
augmented with the required elements from other types
of models. Depending on the particular system and
optimization problem, there may be other key variables
that need to be calculated in the simulation models. For
optimization of pumping operations, which is the focus
of the case studies in this paper, storage water levels and
pump power usage are the most important. Existing
hydrologic, mass balance and hydraulic simulators, for
example, MUSIC, WATHNET and EPANET, have often
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been used in conjunction with optimization algorithms
and should be taken advantage of where possible rather
than creating individual simulators for different problems.

Information from the operation decisions sub-
component [O] will be input to the simulation sub-
component as the overall operating strategy for the
system ([O3] and [O4]) will need to be modeled.
Short-term operations are likely to be considered in a
hydraulic simulator and long-term operations, includ-
ing allocations, in a mass balance model. Parameter
data on the physical components of the system from
the water system infrastructure sub-component [W]
are also required as inputs for this sub-component.
Constraint information is provided to the evaluation
sub-component to compare the systems performance
against specified requirements. Energy usage is used
to calculate objective functions such as life-cycle eco-
nomic costs and life-cycle GHG emissions. Simulating
systems prior to optimization is an important step to
help inform the formulation of the optimization problem
and provide a check that results from the optimization
are reasonable.

Evaluation Sub-component [E]

The purpose of the evaluation sub-component is to
compare the performance of each of the potential solu-
tions to the objectives and constraints of the problem.
The critical aspects of this sub-component as shown in
Fig. 1 and Table 1 are:

[E1] the specific objective(s) to be considered in the
optimization; typically, minimizing life-cycle
economic cost is a primary objective (or a
component of that such as construction cost
or operational cost individually). Other possible
objectives include minimizing spills from reservoirs
and other storages, minimizing life-cycle GHG
emissions (or a component of that such as
embodied energy from construction or operational
emissions), minimizing supplemental potable water
supply (in systems using non-potable sources),
maximizing water quality, maximizing reliability
and minimizing environmental impact.

[E2] the objective function(s) to be optimized; multiple
objectives may be evaluated as individual
functions in a multi-objective optimization
algorithm or combined into a single function for
use in a single objective optimization algorithm.
It is important to consider how each objective
should be formulated, for example, when
optimizing short-term pump operations to
minimize ongoing costs, the objective function
may be evaluated in terms of cost per volume
of water pumped, as this will take into account
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the amount of water delivered to consumers.
Reliability of a system may be formulated in
different ways, for example minimizing the time
spent with water restrictions applied or minimizing
the time spent below a certain storage level. Some
objectives may be more difficult to quantify, such
as minimizing environmental impact, so more
specific objectives may be required, for example,
maximizing environmental flow or minimizing
the change in a water body’s natural hydrological
regime. Simplifications and assumptions may

be required to formulate some objectives as
mathematical functions. When performing
multi-objective optimization, trade-offs between
the different objectives should be considered by
the development of Pareto fronts, allowing the
decision maker to determine which Pareto optimal
solution best fits their needs (see examples in Wu
et al. 2010a, b, 20124, b, 2013).

[E3] the specific constraints to be considered as
described in [S4].

[E4] the evaluation of the constraints compared to
the limits set by the user; maximum and/or
minimum values for each constraint need to be
specified. Some constraints may be flexible, for
example, if an environmental flow is set by a
regulator, the operator could consider increasing
the set environmental flow as a decision variable
in the optimization. There are several different
ways constraints can be incorporated into the
optimization algorithm. Penalty functions are
often used for single-objective problems. They
add value (often a monetary amount) to the
objective function in a minimization problem
and remove value from the objective function in
a maximization problem based on the magnitude
of the constraint violation, therefore making
solutions that violate constraints less desirable
(Nicklow et al. 2010). Care must be taken when
formulating penalty functions to keep solutions that
only slightly violate constraints in consideration
during the optimization process, while ensuring
the feasibility of the final optimal solutions. For
multi-objective problems, a constraint-handling
technique that will ensure feasible solutions
are retained in preference to infeasible solution
is often employed. An example of this is the
constraint tournament selection procedure
introduced by Deb et al. (2002).

Information about the objectives is received from the
simulation sub-component [S] and from the calculation
of construction, maintenance and electrical energy
costs based on the water system infrastructure sub-
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component [W] and simulation sub-component. A dis-
count rate for costs or GHG emissions may be set in the
government policy sub-component [G] which will im-
pact the ongoing costs and emissions in a life-cycle ana-
lysis. The discount rate may be informed by economists,
such as the Stern review which recommends low dis-
count rates for projects that lead to the production of
GHG emissions (Stern 2006). Information about the per-
formance of each potential solution in relation to the ob-
jectives and constraints is provided to the optimization
algorithm in order to find the best solutions.

Optimization algorithm [OA]

The optimization algorithm is used to determine which
solution(s), out of many potential solutions to the prob-
lem, performs best in relation to the objective func-
tion(s). The procedure used to set up the optimization
will depend on the type of algorithm chosen; however,
the first step is generally to define the decision vari-
ables, objectives and constraints of the problem. This
will then guide what aspects of the system need to be
modeled and what data is required in order to take into
account all of the decision variables and that will pro-
vide information for all of the objectives and con-
straints. Multiple potential solutions to the problem
form the ‘solution space’ and the optimization algo-
rithm guides the search of this solution space towards
the global optimum. The size of the solution space de-
pends on the number of decision variables and number
of choices available for those decision variables. More
complex problems are often described as having a more
‘rugged’ solution space, meaning the optimization algo-
rithm is more likely to get trapped in local optima and
will have more difficulty finding the global optimum.
When a single objective optimization algorithm is used,
one optimal solution will be found, while in multi-
objective optimization, a Pareto front will be developed
with multiple solutions representing different trade-offs
between the objectives.

Most optimization algorithms have parameters that
need to be defined by the user, such as the number of
generations or iterations and the population size in evo-
lutionary algorithms. Although the choice of these pa-
rameters does not influence the components shown in
Fig. 1, they have an effect on the optimal solutions found
by the algorithm. In general, the most effective set of
parameter values to use will vary between different
optimization problems and the size of the solution space
can only give some indication of what parameter values
to use. In fact, multiple parameter sets should be tested
in order to find the most appropriate values for the spe-
cific problem. Ideally, the chosen parameter set should
find the same optimal solution regardless of the starting
point or initial solution(s) for the optimization. Dandy et
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al. (1996) presented an improved genetic algorithm for-
mulation for optimization of WDS design. Five different
parameter sets were trialed on both their improved gen-
etic algorithm and a comparatively simple genetic algo-
rithm. They acknowledged that parameter selection does
require some judgement on the part of the user, however,
they found their optimization results to be relatively in-
sensitive to the parameter choice, particularly for the im-
proved genetic algorithm. As well as the effect of various
parameter values, different optimization algorithms will
be more suited to different problems. This issue has been
addressed by the development of hybrid algorithms, such
as AMALGAM (a multi-algorithm, genetically adaptive
multiobjective approach proposed by Vrugt and Robinson
(2007)), which combines several different optimization al-
gorithms to improve search efficiency. These hybrid algo-
rithms also have the benefit of requiring little to no
parameter specification by the user.

Sensitivity analysis

As identified in Table 1, values of some input parameters
(for example, describing the network or water demand
loadings) are uncertain or subject to change in the fu-
ture. Sensitivity analysis can be performed to account for
a wide range of possible future conditions when optimiz-
ing and simulating systems. Variation of a particular par-
ameter may result in different Pareto fronts (in multi-
objective optimization) or different optimal solutions (in
single objective optimization), as seen in Wu et al
(2010b) when they considered variations in discount
rates. These various Pareto fronts or optimal solutions
along with the various parameter values that produced
them can then be provided to the decision maker. Sensi-
tivity analysis will also help to identify if there are any
uncertain parameters that do not affect the optimal re-
sults. Robustness of the optimized solutions can also be
explored a-posteriori: in general, solutions that perform
well for many different possible conditions are more de-
sirable from the decision makers’ point of view. Climate
change provides an additional source of uncertainty for
the parameters identified in Table 1 — detailed discus-
sion of this is omitted from Sections ‘Demand; ‘Rainfall
and streamflow, ‘Electricity and GHG emissions’ and ‘Dis-
count rate’ as it is covered in Section ‘Climate change’.

Demand

In some applications, such as irrigation and agriculture,
the demand rate and pattern may be deterministic [O1],
either the water supplier has control over the con-
sumption, or may be able to work with those who do
to determine an optimal demand schedule. For other
applications, such as domestic, commercial and indus-
trial, the demand rate and pattern depends on the
consumption of water by multiple individual users
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[D4, W13, W14, W15], and therefore has greater uncer-
tainty. Historical consumption can provide some level of
assurance as to how water may be used in the future, at
least on an aggregated scale. Diurnal, weekly and sea-
sonal demand variations need to be considered. In the
future, factors such as climate change, population
growth and water saving initiatives will affect how water
is consumed and therefore impact demand rates and
patterns. Emergency conditions and system failure are
by their nature unpredictable and this should be taken
into account when designing and operating WDSs.

An example of how demand uncertainty can be con-
sidered in the optimization of WDS design is the study
by Basupi and Kapelan (2015). The demand at each time
step was based on a normal distribution with a gradually
increasing mean (based on deterministic demand fore-
casts) and an increasing standard deviation. Monte Carlo
or Latin Hypercube simulation was included in their
methodology to consider multiple demand scenarios.
Each solution in the Pareto front was also further ana-
lyzed against three demand projections — average, opti-
mistic (low overall demand) and pessimistic (high overall
demand). Their results demonstrated the value of flex-
ible WDS design over deterministic approaches when
considering uncertainty.

Rainfall and streamflow

Rainfall and streamflow inputs [W1] may be required for
systems using natural catchment water, harvested storm-
water or imported water, and they are often treated with
higher uncertainty than demands (Seifi and Hipel 2001;
Reis et al. 2005). Within the current climate, there may
be multiple realizations of possible rainfall and stream-
flow series (for example dry or wet years). Beh et al.
(2015) considered rainfall, as well as population and
temperature, as uncertain variables in their optimal se-
quencing methodology for water supply system augmen-
tation. They considered both climate and hydrologic
variability: seven possible future climate scenarios pro-
vided different forecasted rainfall reductions, and within
each of these seven scenarios, 20 stochastic replicates of
the rainfall sequence were produced. Different Pareto
fronts were produced for each climate scenario, with the
more severe scenarios finding solutions that required
greater system augmentation and therefore had higher
costs and GHG emissions. The robustness of each Pa-
reto solution was calculated based on the average reli-
ability and vulnerability of the solution over the 20
rainfall sequences for the particular climate scenario.

Electricity and GHG emissions

Power source(s) [P1], electricity tariffs and costs [P2]
and GHG emission factors [P3] will generally be known
for the present time, however, it may not be clear how
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they will change in the future. The mix of power sources
changes naturally over time, as different power plants
are built or decommissioned. This change in power
source types over time, as well as technical advance-
ments will affect the cost and GHG emissions associated
with electrical energy generation. The electricity market
and economic factors will also affect the cost of elec-
trical energy over time. Changes in electricity and GHG
emissions can be an important factor to consider during
an optimization problem, as shown in the following
examples. Blinco et al. (2014) studied the optimization
of pump operations in WDSs in relation to the
minimization of GHG emissions and the use of different
power source scenarios, showing that optimal tank trig-
ger levels can be influenced by the variation in emission
factors. Wu et al. (2012a) considered three different elec-
tricity tariff scenarios, which increased over time, and
three different GHG emission factor scenarios, which
decreased over time, in the optimization of WDS design.
The different electricity tariff and emission factor scenar-
ios affected the solutions found in the Pareto front and
their overall costs and GHG emissions.

Discount rate

A discount rate [G4] may be used in life-cycle analysis
for both ongoing economic costs and ongoing GHG
emissions. In practice, discount rates on economic costs
vary significantly between different organizations, gener-
ally from 2 to 10% (Rambaud and Torrecillas 2005),
while many water utilities use discount rates in the range
of 6 to 8% (Wu et al. 2010a). When selecting discount
rates, consideration should be given to whether both
economic costs and GHG emissions are discounted, if
they have the same discount rate, and if intergenera-
tional equity is taken into account using social discount
rates. Various social discount rates have been proposed
for discounting ongoing costs; the Intergovernmental
Panel on Climate Change (IPCC) adopted a zero
discount rate over a period of 100 years, after which no
consideration for future costs or benefits is given
(Fearnside 2002), other suggestions include 1.4% (Stern
2006) for projects that are impacted by climate change,
2-4% (Weitzman 2007) and a time declining rate (Gollier
and Weitzman 2010). Wu et al. (2010b) gave an ex-
ample of a sensitivity analysis of discount rates in the
optimization of WDS design for minimization of costs
and GHG emissions. Discount rates of 0, 1.4, 2, 4, 6, 8%
and a time declining rate were applied to the economic
costs, with GHG emissions either not discounted at all,
or discounted at the same rate as costs. They found
that the different discount rate scenarios produced dif-
ferent Pareto fronts; when GHG emissions were dis-
counted, the solutions tended to have lower capital
costs and higher operating emissions.
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Climate change

Management of water resources in the developed world
has been based on an assumption of stationarity — that
is, ‘that natural systems fluctuate within an unchanging
envelope of variability’ (Milly et al. 2008). The effects of
human-induced climate change make this assumption
no longer valid (Milly et al. 2008), and introduce add-
itional sources of uncertainty for many parameters. Uncer-
tainty introduced by climate change is twofold — firstly,
the impacts of climate change increase the uncertainty of
future weather conditions; and secondly, our response to
the threat of climate change and the types of adaption
methods that will be utilized in the future are uncertain.
Climate change affects the magnitude and temporal and
spatial distribution of rainfall, temperature and other
environmental factors, thus the possible rainfall and
streamflow series to consider for the future will likely be
different to the present. Changes to temperature and other
environmental factors will also affect the hydrology of nat-
ural and urban catchments and therefore change how
rainfall will transform to runoff or streamflow. Climate
change impacts will also affect how people consume water,
for example, higher temperatures and lower rainfall may
drive people to water their gardens more. In order to
simulate future climate conditions, general circulation
models (GCMs) are often used in conjunction with future
emissions scenarios. According to Mpelasoka and Chiew
(2009), ‘GCMs are the best tools available for simulating
global and regional climate systems, however, the informa-
tion provided is generally too coarse for applications to
catchment runoff, and therefore some kind of downscaling
is required. The modeling uncertainty of both the GCMs
and downscaling methods increases the uncertainty of fu-
ture climate scenarios (Paton et al. 2013). In 2000, the
IPCC introduced several emissions scenarios (termed
SRES scenarios) projecting future global GHG emis-
sions (IPCC 2000). The various scenarios are based on dif-
ferent assumptions of the mix of energy generating
technologies (fossil fuel or non-fossil fuel dominant) and
population, economic and technological growth (IPCC
2007).

The extent to which we can reduce our GHG emissions
will affect the magnitude of climate change impacts on
rainfall and temperature. With the growing concerns of
climate change and sustainability, renewable sources such
as solar and wind will become more prevalent and replace
fossil fuel sources such as coal and gas. This may affect
electricity pricing and GHG emissions from power gener-
ation. Multiple future power source scenarios assuming
different levels of climate change mitigation may need to
be considered. Other climate change adaption strategies
include economic incentives such as carbon taxes and cap
and trade systems, which may affect economic analysis of
WDSs. As discussed in Section ‘Discount rate, when
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climate change and intergenerational equity are consid-
ered, social discount rates of 0, 1.4, 2—4% and time declin-
ing rates have been proposed.

Paton et al. (2013) analyzed the sources of uncertainty
relating to climate change and their impact on water
supply security. They considered 19 different scenarios
with different combinations of six SRES scenarios, seven
GCMs and six demand projections, as well as 1000 sto-
chastic rainfall replicates. They found that the impact of
the different sources of uncertainty on the optimal solu-
tions varied over the 40-year planning period, with some
having a greater effect in the short-term and others a
greater effect in the long-term. Roshani and Filion
(2014) investigated the impact that different climate
change abatement strategies have on water main re-
habilitation. They consider six carbon abatement strat-
egies with different combinations of two discount rates
(1.4 and 8%) and three carbon tax scenarios (no tax, ‘fast
and deep; and ‘slow and shallow’). Using a low discount
rate and implementing a carbon tax encouraged the
optimization algorithm to find solutions that invested in
rehabilitation early, to reduce the cost of continuing
leaks, pipe repair, energy use and GHG emissions.

Case studies

The utility of the framework described in the previous
sections will now be explored by two different case stud-
ies that have different water sources and many variables
that need to be considered. These case studies are pro-
vided as an example of how the framework could be ap-
plied to optimize system operations. The first case study
is a managed aquifer recharge (MAR) system that har-
vests stormwater from an urban creek for irrigation of
reserves and sporting fields. This case study demon-
strates the importance of analyzing the system by simu-
lation prior to optimization in order to formulate the
optimization problem. The second case study is a water
supply system in a rural town that supplies potable water
from multiple alternative water sources. This system is
optimized for minimization of energy use of the many
pumps used to transfer water from the various sources.

Ridge Park managed aquifer recharge - case study 1

Ridge Park is located in the Adelaide metropolitan area
in South Australia, within the City of Unley local gov-
ernment area. The scheme supplies harvested storm-
water to sports fields and recreational reserves in the
local area for non-potable irrigation use. The scheme is
designed to harvest up to 60 ML of stormwater per year,
which occurs over the winter, while in summer the har-
vested water is used for irrigation. During winter, storm-
water from Glen Osmond Creek, an urban waterway, is
collected in the Harvest Pond created by a dam on the
creek (Fig. 2). Water is then pumped to the Bioretention
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Harvest Pond Bioretention
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Fig. 2 Ridge Park managed aquifer recharge system process schematic
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Basin which provides some treatment, and then pumped
to a small treatment plant that includes UV and filtra-
tion. Once the water has been adequately treated, it is
stored in an above ground tank next to the treatment
plant and final pump station. From the Storage Tank,
water is injected into an artesian, fractured rock aquifer
for long term storage. In summer, when no water is
being harvested, water is extracted from the Aquifer and
to the Storage Tank, before being pumped or gravity-fed
to irrigation points. The Ridge Park Reserve is irrigated
by a pressurized irrigation line, as it is at higher eleva-
tion than the Storage Tank. Fraser Reserve is also con-
nected to the pressurized system to ensure adequate
pressures for irrigation. In total, the pressurized system
supplies almost 15 ML of water per year. The remaining
seven reserves are on a gravity-fed line which supplies a

total demand of roughly 35 ML per year. The layout and
details of the system are given in Fig. 3. For more de-
tailed data on this case study, please see the Additional
files 1, 2, 3 and 4.

For existing systems, simulation analysis of the current
operation is an important first step in formulating the
optimization problem. Results of current operational
simulations can highlight areas for improvement that
can then be focused on in the optimization. The oper-
ation of the Ridge Park stormwater harvesting system
was split between winter and summer operations and
both were simulated in EPANET to determine current
pump operational costs. Trigger levels (related to vol-
umes in the three storages as shown in Table 2) control
when the pumps in the Winter Harvesting and Injection
system turn on and off (Table 2). The Bore Pump is also
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Total irrigation pipeline length: 4.3 km
Pressure pipeline diameter: 90 mm PE
Gravity pipeline diameter: 180 mm PE

Fig. 3 Ridge Park managed aquifer recharge system layout and data
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Table 2 Trigger levels for the Ridge Park system

Storage and trigger level Current setpoint Start  Stop
type Volume (%) Level (m) pump. - pump
Harvest Pond High Level 80 16 1 -
Harvest Pond Low Level 50 1.0 - 1
Biofiltration Basin High Level 90 0.80 2 1
Biofiltration Basin Low Level 50 0.59 - 2
Storage Tank High Level 90 2.25 3 2, Bore
Storage Tank Low Level 70 1.75 Bore 3

controlled by trigger levels in the Storage Tank. During
summer, Pump 3 is controlled by the irrigation demands,
which are on a schedule so that different reserves are irri-
gated on different nights (Table 3). Pump 3 is a VSP and is
operated at 80% of full speed for injection (such that the
flow is less than the 7 L/s maximum for injection) and
75% of full speed for irrigation (such that the target pres-
sure downstream of the pump is achieved at the expected
demand rates). Both systems were simulated for a period
of 1 week in EPANET, with a 15 min hydraulic time step
and 5 min reporting time step. Several week-long stream-
flow series for the available flow in Glen Osmond Creek at
a daily resolution were used in the harvesting and injection
model (Fig. 4). A peak/off-peak electricity price tariff ap-
plied to the entire system; a peak price of 25.53 ¢/kWh was
applied from 7 am to 9 pm on weekdays, and an off-peak
price of 15.26 c/kWh was applied over night and on week-
ends (tariff pattern and simulations started on a Sunday).

Winter harvesting and injection system current pumping
operation results

When there was adequate water available, such as in
Streamflow Series 1, 4 and 5, the volume of water
injected into the aquifer (by Pump 3) was a little over 3
ML per week (Table 4). This was significantly less than
the volume available, which reflects the limited flow rate

Table 3 Irrigation demand schedule for the Ridge Park system
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of Pump 3 (7 L/s for injection to the aquifer), as well as
the water that would be lost to overflow when the inflow
rate is greater than the flow rate of Pump 1 (approxi-
mately 22 L/s). The total pump energy cost estimate for
the harvesting and injection system ranged from $163 to
$267 per week, with an average of $235 per week. Pump
1 was the most cost-effective to run, while Pump 3 was
the most expensive. Pumps 1 and 2 operated at similar
times throughout the day, however, Pump 2 has much
lower efficiencies, which increased its energy use. Pump
3 operated at a lower flow rate but much higher head
than Pumps 1 and 2, and was more likely to be switched
on for the entire day, which contributed to its higher
cost of operation. Pumps 1 and 2 turned on and off very
frequently, and operated at a much higher flow rate than
Pump 3 (Fig. 5). The flow rate of Pump 3 in Fig. 5(c) re-
duced over the week as the headloss through the bore
increased from assumed clogging of the bore. As the
storages are relatively small, in particular the storage tank,
it did not take long for them to be filled and emptied
(Fig. 6), which contributed to the frequent pump switches.
The current trigger levels in the Storage Tank are very
close together (70 and 90% volume) as a result of possible
pump priming issues that occurred during the commis-
sioning of the system. These close together trigger levels
also contributed to the short fill and empty times.

Summer extraction and injection system current pumping
operation results

Simulation of the irrigation system gave a total weekly
pump energy cost of $90 (Table 5). The Bore Pump was
more expensive overall, however, cost less per megaliter
than Pump 3. This occurred because while the Bore
Pump has a greater efficiency than Pump 3, it also has a
higher flow and head, which increased the energy con-
sumption. The higher volume pumped from the bore
contributed to a lower cost rate than Pump 3. All of the
pumping for this system occurred overnight (Fig. 7)

Reserve Demand rate (L/s) Duration/day (hr) Start time Irrigation days
Ridge Park 1 353 833 9:30 PM Mon & Wed
Ridge Park 2 353 8.67 9:30 PM Tues & Thurs
Fraser Reserve 141 583 9:30 PM Mon & Wed
Ferguson Ave Reserve 2.00 5.00 9:30 PM Tues & Thurs
Scammell Reserve 215 6.00 10:00 PM Tues & Thurs
Fullarton Park 1 385 167 10:00 PM Mon & Wed
Fullarton Park 2 385 6.67 10:00 PM Tues & Thurs
Fern Ave Reserve 353 333 10:00 PM Mon & Wed
Windsor St Reserve 2.20 8.00 8:30 PM Tues & Thurs
Henry Codd Reserve 1.10 8.00 10:00 PM Mon & Wed
Unley Oval 557 9.00 9:00 PM Sun, Mon & Wed
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when irrigation of all fields is allowed. The Bore Pump
turned on and off very frequently when it was operating,
again due to the small capacity of the Storage Tank
which meant it did not take long for the pump to fill the
operating volume (Fig. 8).

Optimization formulation

Initially, optimization of the Ridge Park system was con-
sidered to be an operational problem, however, results of
the current operation simulation suggest that design de-
cision variables need to be considered as well. Replacing
Pumps 1 and 2 with models that would operate at much
lower flow rates (to reduce the headlosses) and increas-
ing the size of the Storage Tank will be considered along
with operational decision variables (Table 6). These
design decisions would aim to counter-act mismatched
pump rates (Pumps 1 and 2 operating at a much higher
rate than Pump 3) and small storage volumes that lead
to frequent pump switches. Short-term operational deci-
sions include trigger levels in the Harvest Pond, Biore-
tention Basin and Storage Tank that will govern when
pumps are turned on and off, a schedule for irrigation
(that is, which reserves will be irrigated at which times),
and VSP multipliers for Pump 3. In the current oper-
ation, VSP multipliers for Pump 3 were selected to en-
sure the required flow rate (for injection) and pressure
(for irrigation) were achieved. With different levels in

Table 4 Current operation results for the winter harvest and
injection system

Streamflow  Available  Cost (c/kL) Volume  Total
Series volume Pump 1 Pump 2 Pump 3 injected  cost
(ML/wKk) (ML/WK) — (S/wk)
1 19.0 0.64 228 549 3.14 267
2 229 0.68 232 6.19 176 163
3 6.19 0.69 2.23 587 244 222
4 154 0.64 224 546 3.18 258
5 29.7 0.63 2.25 547 3.16 264
Average 14.5 0.66 2.26 5.70 2.74 235

the Storage Tank considered, the VSP multipliers for
Pump 3 can be altered, especially if efficiency is im-
proved. If the pump priming issues discussed earlier
were to be resolved, trigger levels that utilize the full
height of the Storage Tank (rather than the 20% range in
water elevation that is currently used) would be consid-
ered in the optimization. There are also long-term deci-
sion variables deciding when to switch between summer
and winter operation and vice versa (Table 6). As the
scheme injects to and extracts from the aquifer through
the same bore, it is not possible to frequently switch
between injecting and extracting water, therefore there
will be only two switch times per year; one going into
winter operation and one going into summer operation.
The decision variables presented in Table 6 may all be
considered together in an optimization problem, how-
ever, they could also be analyzed prior to optimization in
a simulation sensitivity analysis. Simulating the system
initially with the different pump models and storage tank
sizes could help to decide if these actions are worthwhile
considering in an optimization formulation. Engineering
judgement may be sufficient to determine which pump
model(s) would be best to replace Pumps 1 and 2, and
therefore reduce the size of the optimization problem.
Constraints on the system include an environmental
flow for Glen Osmond Creek, an extraction limit from
the Aquifer and meeting the weekly irrigation volumes
for each reserve in the summer (Table 7). If there was
not enough water harvested over the winter to supply
the summer demands, a potable back-up supply is avail-
able at a cost. The main objective for this case study is
to minimize the pump energy cost; there is also a sec-
ondary objective of minimizing the number of pump
switches. To create an incentive for the optimization to
find solutions that harvest more water, the cost objective
includes the energy cost for the harvesting and distribu-
tion operation as well as the cost of purchasing potable
water if the harvested volume is not enough to supply
demand. The objective function is formulated as the cost
per volume of water harvested as another means to ensure
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enough water is harvested from the system during winter
to supply summer irrigation. During the conceptualization
and design of this scheme, regulations from the South
Australian Environmental Protection Authority (EPA), the
Department for Environment, Water and Natural Re-
sources (DEWNR) and the Department of Health (DoH)
were considered. A license to recharge water into the
aquifer was required from the EPA, while the DEWNR
regulates how much water can be extracted from MAR
schemes. DoH regulations informed the level of treatment
implemented and the irrigation practices, which must
limit the risk of public exposure.

Orange integrated supply system - case study 2

Orange is a rural town roughly 250 km west of Sydney
in the state of New South Wales, Australia. The water
supply system serves a population of around 36,800
people with an average annual demand of approximately
5,400 ML. The majority of water supply is from the
local surface water catchment, which culminates in the
roughly 19,000 ML Suma Park reservoir (Fig. 9).
Australia experienced severe drought between 2000 and
2010, and Orange was one of the hardest hit areas in
New South Wales. Even with severe water restrictions
almost halving the town’s demand, Orange had less
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Table 5 Current operation results for the summer extraction
and irrigation system

Pump Volume (ML/wk) Cost (c/kL)
Bore Pump 193 3.52
Pump 3 0.57 397
Total $90.3/week

than two years of water supply heading into summer of
2009 and was relying only on surface water catchments
(Montgomery Watson Harza, 2011). This prompted the
Orange City Council to diversify their water supply,
and they therefore developed two stormwater harvest-
ing schemes and a long pipeline from an adjacent
catchment, as well as re-opening several groundwater
bores. Figure 2 shows a schematic process diagram of
the system, which is described below, and Fig. 3 shows
the layout (note that the ‘Shearing Shed’ Bore and ‘Bore
5 in Fig. 2 are grouped as the ‘Clifton Grove’ Bores in
Fig. 10). For more detailed data on this case study,
please see the Additional files 1, 2, 3 and 4.

Water from the Ploughman’s Creek Stormwater
Scheme is treated through a series of wetlands, and then
combined with water from the Blackman’s Swamp Creek
Stormwater Scheme. After treatment, this water can be
used to top up Suma Park reservoir. Due to the severely
low water supply levels during the drought, Emergency
Authorization was initially given, and Council subse-
quently sought approval for use of the stormwater
schemes on a permanent basis. Continuous water quality
monitoring is undertaken to meet regulations of the Of-
fice for Water, the New South Wales Environmental Pro-
tection Authority and the Ministry of Health. To the
authors’ knowledge, this is the only system in Australia that
has been approved to use harvested stormwater for potable
supply. In order to use harvested stormwater for potable
supply, the Council had to meet requirements of the Office
for Water. The Macquarie pipeline transfers water from
the adjacent Macquarie River catchment to Suma Park res-
ervoir. It is 38 km long and requires more than 600 m of
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pumping head. Each of the three pumping stations has two
pumps operating in parallel. Water from the groundwater
bores is pumped first to balancing storages and then to
Suma Park reservoir, with a combined licensed volume of
462 ML per year. Water from all of the sources is com-
bined in Suma Park reservoir and treated at a water treat-
ment plant before being delivered to consumers.

The Orange City Council is interested in optimizing the
operation of this while delivering a secure yield from Suma
Park Dam. In addition to the primary objective of minimiz-
ing energy cost, there are objectives of minimization of
spill from Suma Park reservoir, minimization of (perceived)
environmental impact, maximization of (perceived) water
quality, and minimization of energy use. The Council has
an explicit objective to minimize spill to ensure water and
energy are not wasted by pumping from one of the three
alternative sources to fill up Suma Park reservoir just be-
fore a rainfall event that would supply water from the nat-
ural catchment at no cost or energy output. As this system
supplies potable demands, it is undesirable to apply water
restrictions to consumers, thus minimizing time spent in
restrictions is important. Objectives for the perceived en-
vironmental impact and water quality will be formulated as
a preference ranking between the different sources based
on community views of which sources are better for the
environment and water quality. The constraints of the
problem include environmental flows for the Macquarie
River (downstream of the pumping station offtake point)
and stormwater schemes, a water source license for the
Macquarie River and extraction limits on the ground-
water bores (Table 8).

Energy optimization formulation

In this section, the developed framework is applied to
the Orange case study to help set up the optimization
procedure and identify the components and data to be
modeled. Note that the model has been built taking into
account all possible objectives of the system, however,
the example of results presented here will focus on the
minimization of energy consumption.

20
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Fig. 7 Current demand rate and pump flows for the irrigation system
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As all components of the system have already been
constructed and considered sufficient for the operation
of the system, there are no design decisions to consider,
only operating decisions. For this case study, operating
decisions consist of trigger levels in the various storages.
These types of decision variables are chosen considering
the control system available at each pump station (based
on storage levels and not on time of the day) and
the fact that the controls have to be defined for an
operational horizon of 1 year or longer. As all of the

Table 6 Possible decision variables for the Ridge Park MAR scheme

Short-term winter harvesting and injection operation

Pump 1 Off Harvest Pond Level Low
Bioretention Basin Level High
Pump 1 On Harvest Pond Level High
Pump 2 Off Bioretention Basin Level Low
Storage Tank Level High
Pump 2 On Bioretention Basin Level High
Pump 3 Off Storage Tank Level Low
Pump 3 On Storage Tank Level High

Pump 3 Speed Storage Tank Level
Short-term summer extraction and irrigation operation

Bore Pump Off Storage Tank Level High
Bore Pump On Storage Tank Level Low
Irrigation Schedule Days of Irrigation at each Reserve

Start Time of Irrigation at each
Reserve
Pump 3 Speed Required Demand Rate
Long-term operations
Day to Switch Between Summer to Winter
Seasonal Operational Regimes  Winter to Summer
System Design

Doubled, 5 times, 10 times current
size

Storage Tank Size

Pumps 1 and 2 Selection of pump curves with lower

operating rates

pump stations have two or more pumps arranged in
parallel, having different trigger level values may have a
large impact on the operating point of the pumps and
consequently their energy consumption. It is also likely
that different trigger levels will be chosen for peak and
off-peak electricity tariff periods when they are in-
cluded in a cost optimization. For this system a peak/
off-peak electricity tariff applies on weekdays, with
weekends priced at the off-peak rate. A peak monthly
electrical energy demand charge also applies to the
Macquarie River pipeline pumping system. In order to
assess the performance of different tank trigger levels,
the infrastructure to be modeled includes the natural
and urban catchments for the surface water and storm-
water systems respectively, Suma Park reservoir, pipe-
lines and pumps in the groundwater, Macquarie River
and stormwater systems, and wetlands and storage
ponds in the stormwater systems.

In general, the system could be modelled using hydro-
logic models, mass balance models, and/or hydraulic
models. The choice of which model(s) will be used
depends on the objectives and the processes to be mod-
elled, on the available data and the computational times.
In particular, hydrologic modeling is usually used to trans-
form rainfall to runoff for the natural and urban catch-
ments. For this case study, inflows inputs or approximate
relationships between rain and flows were provided by
previous studies by the Orange City Council. Hydraulic
models are usually used for short term operations: pump
energy costs can be computed accurately based on the hy-
draulic equations. Mass balance modeling is usually used
for assessing the system in long term operations, as it can

Table 7 Possible constraints for the Ridge Park MAR scheme

Constraint

Value
>2 L/s

Glen Osmond Creek Environmental Flow
Aquifer Extraction in Summer <80% of Injection Volume
Pressurized System Demands >15 ML/year

Gravity System Demands >37 MLU/year
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.

quickly compute the water available after evaporation and
other losses in the system have occurred and after mini-
mum environmental flows have been released. It cannot,
however, take into account the non-linearity in the hy-
draulic equations and therefore assumptions need to be
made in regard to the flow delivered by the pumps in the
system. While hydraulic simulation would be most appro-
priate for the pumping stations in the system as they have
multiple pumps and sometimes have connected pipelines,
mass balance models would need to be used to compute
the additional processes, such as evaporation and the
release of minimum environmental flows that need to be
taken into account given the long duration of the

simulation. During an optimization process, simulating
each potential solution using both a mass balance and a
hydraulic model would increase considerably the computa-
tional time, particularly if data transfer between the two
models was required. It is therefore suggested that the pri-
mary simulation tool should be a hydraulic solver. Rainfall-
runoff modeling could be performed pre-optimization, and
supplemental code added to a hydraulic model to account
for functionality of a mass balance model. This would
allow for consideration of the evaporation from and
rainfall directly to reservoirs, changes to demands based
on water restrictions and environmental flows that de-
pend on the combined volume of two reservoirs (Spring
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Fig. 10 Orange integrated supply system layout and data
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Table 8 Constraints for the Orange integrated supply system

Constraint Value
Macquarie River Environmental Flow >108 ML/day
Blackmans' Creek Environmental Flow >20 ML/day
Ploughmans’ Creek Environmental Flow from Pump S4  >04 ML/day
Ploughmans’ Creek Environmental Flow from Pump S5 >2 ML/day
Ploughmans’ Creek Environmental Flow from Pump S6  >2 ML/day
Clifton Grove (Shearing Shed and Bore 5) Aquifer <182 ML/year
Extraction

Showground Aquifer Extraction <280 ML/year
Macquarie River Extraction License <12 ML/day

Creek and Suma Park), infiltration losses when transfer-
ring water between reservoirs and peak power demand
charges.

Another important issue to consider is what simula-
tion time step should be used. Using a shorter time step
will increase the accuracy of this hydraulic analysis and
often results in feasible optimization times for storages
that empty or fill in a day or two (as would likely be the
case for the stormwater ponds and Macquarie pipeline
balancing storages). Simulating the behavior of Suma
Park dam is more challenging, however, as the variations
in the water levels can have a period of several years.
Thus, the computation times with a short time step be-
come prohibitively long. A balance needs to be found
between using a short enough time step for the detailed
hydraulics and a long simulation time for the large stor-
ages without having a prohibitively large computational
time. Given the data availability (there is 118 years of
rainfall and inflow data available, with a daily time step)
the time step chosen is 1 day.

Given that the time-step is automatically shortened by
the hydraulic solver chosen (EPANET in this case), the
model of the real system has been simplified in order to
avoid excessive computational times. In particular, given
that the levels in the balancing storages along the
Macquarie pipeline vary rapidly, these storages were re-
moved and the pipeline simulated with two parallel
pumps, each representing the equivalent of the three
stages of pumping (that is, the pump curves for Pumps
Mla and b in Fig. 2 were adjusted such that they repre-
sented Pumps M2a, M3a and Pumps M2b, M3b as well).
This simplification is considered acceptable as the pumps
in series in the Macquarie pipeline will usually be operated
at the same time, given that each pump will still be con-
trolled also by the level of Suma Park Dam. Longer com-
putational times were also caused by the small storages
after the groundwater bores. The pumps used for extrac-
tion from the aquifers (Pumps Gla, G2a and G3a in Fig. 2)
operate at relatively consistent rates, and as such they
could be removed from the model and their energy use
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accounted for relative to the volume pumped from the
second pump in each system (Pumps G1b, G2b and G3b
respectively). To take into account the limited volume
available from the groundwater bores, the storage tanks
in the groundwater system each had a volume equiva-
lent to a year’s allocation for the respective bores. All of
the stormwater pumps except for Pump S2c¢ and Pump
S3c, which are standby pumps and not in use, were in-
cluded in the model. As well as the operating point of
the pumps changing depending on the number of
pumps used in parallel, there may be slight differences
in efficiency and therefore energy use, and thus includ-
ing all pumps here provided more accuracy.

All of the pumps included in the model were con-
trolled using rule-based controls in EPANET, with con-
ditions based on levels in one or more storages as well
as time. Conditions based on downstream storages were
considered as decision variables, while conditions based
on upstream storages were fixed (Table 9). For the Mac-
quarie pumps, there were also conditions based on the
flow in the river to ensure that no water would be taken
when there was not enough water available. There were
four possible decision variables for each pump, a lower
and upper trigger level in both the peak and off-peak
time. For optimization of energy use, only two are re-
quired, as peak and off-peak tariffs are not considered.
As the model was set up for other objectives including
cost, which does use a peak and off-peak electricity
tariff, the capability to choose different trigger levels in
different periods was incorporated. A maximum of 15
pump switches per day per pump were allowed, and the
end level of Suma Park Dam was constrained to 16 m
(to be approximately the same as the start level). Based
on license conditions, Macquarie River water can only
be used when the Suma Park Dam level is below 90%, so
choices for Pump Mla and M1b trigger levels in Suma
Park Dam are more restricted than for other pumps.

Energy optimization results

Minimization of pump energy use over the longer term
is presented here as an example of optimization of this
system. Note that the system is simulated over 1 year, at
a daily time step in EPANET. Additional computer code
was added to the EPANET hydraulic simulation to take
into account other process such as rainfall to and evap-
oration from storages. This code essentially adds a mass
balance component to the hydraulic simulation. Histor-
ical rainfall for the catchments in the system was mod-
elled in MUSIC hydrologic software to develop inflow
series for the ponds and reservoirs. For this optimization
the year with the closest to average rainfall was used,
however, other years of rainfall were available and this
optimization could be extended to consider other cli-
mate conditions.
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Table 9 Decision variables and fixed controls for the Orange integrated supply system

Decision variable or fixed

Pump station action

Storage(s) controlling operation

Macquarie Pump M1a, M1b Off
Macquarie Pump M1a, M1b On
Stormwater Pump S1a, S1b Off

Stormwater Pump S1a, S1b On

Stormwater Pump S2a, S2b Off

Stormwater Pump S2a, S2b On

Stormwater Pump S3a, S3b Off

Stormwater Pump S3a, S3b On

Stormwater Pump S4a, S4b Off

Stormwater Pump S4a, S4b On

Stormwater Pump S5a, S5b Off

Stormwater Pump S5a, S5b On

Stormwater Pump S6a, S6b Off

Stormwater Pump S6a, S6b On

Suma Park Dam Level High
Suma Park Dam Level Low
Holding Pond Level High

Blackmans Stormwater Pond Level Low

Holding Pond Level Low

Blackmans Stormwater Pond Level High

Batch Ponds Level High
Holding Pond Level Low

Batch Ponds Level Low
Holding Pond Level High

Suma Park Dam Level High
Batch Ponds Level Low

Suma Park Dam Level Low
Batch Ponds Level High

Holding Pond Level High
Mitchell Wetland Level Low

Holding Pond Level Low
Mitchell Wetland Level High

Holding Pond Level High
Brooklands Wetland Level Low

Holding Pond Level Low
Brooklands Wetland Level High

Holding Pond Level High
Somerset Wetland Level Low

Holding Pond Level Low
Somerset Wetland Level High

Decision Variable
Decision Variable

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Groundwater Pump G1 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G1 On Suma Park Dam Level Low Decision Variable
Groundwater Pump G2 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G2 On Suma Park Dam Level Low Decision Variable
Groundwater Pump G3 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G3 On Suma Park Dam Level Low Decision Variable

NSGAII (Non-dominated Sorting Genetic Algorithm
IT) software was used for the optimization, with five ran-
dom seeds, a population size of 50, 100 generations and
probabilities of crossover and mutation of 0.8 and 0.02
respectively. In the best solution found, the system used
a total of 793 MWh of energy over the entire year.
Table 10 shows the volume of water pumped from each
source to Suma Park Dam (and supplied from the local
catchment) and the energy used by each of the pumps
for the optimal solution. Pumping from the Macquarie
is very energy intensive so this is only used at the very
end of the simulation when the level in Suma Park Dam
is very low, in order to achieve the end target level con-
straint (Figs. 11 and 12). Groundwater and stormwater
sources are used initially to increase the level of Suma
Park Dam to its maximum, and then not used again
until around Day 160 when the level in the dam has

dropped again. Only one of the Macquarie pumps is
used, as, despite operating at a lower energy efficiency
point, it uses less energy overall than operating two
pumps in parallel. In dryer years, both pumps may need
to be utilized in order to ensure supply to Suma Park
Dam. Nearly all of the available groundwater license is
used; G1 and G2 have a combined license of 180 ML/
year, and G3 280 ML/year. Groundwater is more energy
intensive than stormwater, however, it can be used at
any time throughout the year, while stormwater is reliant
of inflow. Most of the stormwater provided to Suma
Park Dam came from the Blackman’s Creek scheme (S1)
rather than the Ploughman’s Creek scheme (S4, S5 and
S6). While the storage capacity of the Blackman’s Creek
scheme is much lower, the pump capacity and energy
efficiency is much greater than in the Ploughman’s Creek
scheme, so it provides more water.
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Table 10 Volume of water pumped/supplied and energy used
in the optimal energy solution

Source Pump  Volume Energy Energy Rate
(ML) (MWh) (MWh/ML)
Macquarie River M1a 0 0 0
M1b 74 150 202
Total 74 150 2.02
Groundwater® G1 24 11 046
G2 146 79 0.54
G3 235 106 045
Total 405 196 048
Stormwater Sla 258 39 0.15
S1b 479 71 0.15
S2a 828 65 0.08
S2b 237 21 0.09
S3a 1022 170 0.17
S3b 22 55 0.25
S4a 178 41 0.23
S4b 12 3.1 0.27
S5a 24 4.8 0.20
S5b 56 1 0.19
Séa 60 1 0.18
S6b 26 50 0.19
Total® 1044 447 043
Spring Creek and Suma - 3865¢ - -

Park Catchment

“The energy consumption for the groundwater pumps includes both the transfer
and bore pumps, i.e. the energy for Pump G1 includes G1a (not modelling in
EPANET, energy use estimated from volume) and G1b (modelled in EPANET)
PThe total volume supplied by the stormwater schemes is measured as the
combined volume supplied by Pumps S3a and S3b (which discharge to Suma
Park Dam), while the total energy is the total of all pumps

This is the volume supplied by the natural catchment for the town'’s consumption,
the total inflow from the catchment is greater than this however some is used to
provide environmental flows and some spills
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Conclusions

A generalized framework for the optimization of the
design and operation of water supply and distribution
systems has been developed and two case study sys-
tems have been used as examples of how to apply it.
The framework is comprised of several components;
the options component describes the design and oper-
ational decision variables for the optimization, the
infrastructure component covers the infrastructure as-
pects of the system that need to be modeled and their
data requirements, the analysis component includes
the simulation of the system and evaluation against the
objectives and constraints, and finally the government
policy component describes the regulations that may
affect other aspects of the framework. These compo-
nents fit within an optimization algorithm structure,
which firstly generates potential solutions using the
decision variables in the options component, models
the system according to the infrastructure component
and evaluates potential solutions using the analysis
component. The evaluation of potential solutions then
feeds into the solution space which informs how the
decision variables are changed in the next set of poten-
tial solutions. Sensitivity analysis of parameters will
significant uncertainty should be undertaken to ensure
robust solutions. The framework also applies to simu-
lation of systems prior to or without optimization.

The Ridge Park MAR Scheme Case Study harvests
stormwater from an urban creek and stores it in an aqui-
fer, to be extracted at a later time and used as non-
potable supply for irrigation of sporting fields and re-
serves. For this case study, and similar ones, the simula-
tion of the system may be simplified by splitting the
system into two parts, one for the components of the
system used in winter operation (harvesting and injec-
tion) and one for the components used in summer oper-
ation (extraction and irrigation). This system highlighted
the importance of simulation and analysis prior to
optimization, in order to focus the formulation of the
optimization problem. The Orange Integrated Supply

Level (m)
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Fig. 11 Variation in Suma Park Dam level for the energy optimal solution
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Fig. 12 Volume pumped from each source to Suma Park Dam for the energy optimal solution
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----- Stormwater

System Case Study uses multiple water sources; natural
catchment water, harvested stormwater, imported water
and groundwater to supply potable demands. For this
case study, finding an appropriate combination of simula-
tion models and time step and simulation duration is im-
portant in order to provide accuracy in representing both
long- and short-term operations without excessive com-
putational times. Optimization of pump energy use for
this system indicated that the groundwater and storm-
water supplies are more desirable to supplement natural
inflows than the imported water from the Macquarie
River, which required a lot of energy to transfer water over
a long distance and against a high elevation head.

The framework is generalized, and so could be applied
to other water supply and distribution systems, particu-
larly those using non-traditional water sources, to
optimize their design and operation. While the frame-
work attempts to cover all aspects of water supply in a
generalized manner, it does have some limitations. Along
with the supply of water, there will always be a need to
manage wastewater. Apart from considering recycled
wastewater as a source, this framework does not cover
wastewater systems in terms of collection, transport,
treatment and potential discharge of wastewater into the
environment. Treatment of raw water supplies is in-
cluded in the framework, however, the details of such
treatment and measurement of water quality throughout
a water distribution system are not focused on as much
as the design and operation of the systems. A difficulty
of applying this framework will be the definition of the
boundary of a system and which aspects should be
analyzed. Currently, there does not exist commercial
software that has all of the capabilities considered in
the framework (i.e. both hydrologic and hydraulic simu-
lation). This means that specialist simulation models
may need to be developed for particular systems (as
was done for the second case study). Future develop-
ments in simulation software may reduce the difficultly
of combining hydrologic, mass balance and hydraulic

considerations and remove the need for specialist tools
built for individual systems. In the future, the frame-
work should be tested with other case study systems to
fully investigate its benefits.
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