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The cost of living in the Anthropocene
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Abstract

The most recent epoch, the Holocene, has been a period of relative environmental stability, allowing humans to
develop agriculture and establish settlements, culminating in modern civilization. Human activities have now
reached such a scale that we are having significant impacts on planetary systems, and these effects are of sufficient
magnitude to suggest that we have triggered a new geological epoch, the Anthropocene. Neither climatic nor
biogeochemical stability is likely to continue in the Anthropocene, and the Earth systems we rely on to provide a
liveable environment for human society are likely to become much less predictable. The stability of our
infrastructure, the reliability of our production systems and the liveability of our cities will all be much less certain in
the future. More research on the diverse aspects of global change will certainly help to improve predictions on the
timing and extent of changes, but will not alter the basic conclusion that global change is upon us. There is now a
pressing need for much more interdisciplinary work, addressing such questions as the global societal changes that
must accompany responses to environmental change, and dealing with the true economic consequences of a
less predictable environment. Conceptualizing the challenges that face humanity under the umbrella of the
Anthropocene should allow different disciplines to collaborate and develop strategies for dealing with global
change in a coherent and rational manner. Researchers in diverse fields must work together with primary
producers, politicians, business interests, policy makers and the public to formulate strategies to minimise or
mitigate the risks that face all of humanity over the next centuries. Here we provide a summary of the
environmental triggers that are pushing us into the Anthropocene, and outline the consequences of transgressing
the boundaries beyond which earth systems are likely to become unstable.
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Background
The history of Earth is divided into geological periods.
The most recent period is the Quaternary, which spans
the last 2.5 million years, and corresponds roughly to
the time that hominids have occupied the Earth. In
turn, periods are subdivided into epochs. For instance,
the Quaternary is divided into the Pleistocene and the
Holocene epochs. Transitions between Periods or Epochs
are defined by major geological or paleontological events
that leave a signature in the geological record. Such sig-
natures are caused by significant changes in climate,
atmosphere or biota. The best-known example of such
a transition is the catastrophic event that ended the
Cretaceous period and coincided with the extinction of
the dinosaurs.
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For the last 10,000 years, humans have been living in
the Holocene epoch. This has been an interglacial period
of relative environmental stability, where temperature,
atmospheric conditions and biogeochemical cycles have
exhibited only minor fluctuations (Dansgaard et al. 1993;
Rioual et al. 2001; Young and Steffen 2009). This stabili-
ty allowed humans to develop agriculture and form set-
tled communities, culminating in the complex societies
of modern times. The very stability of the Holocene has
helped humans to abandon a mobile lifestyle that ex-
ploited natural resources, in favour of permanent settle-
ments with complex infrastructure (van der Leeuw 2008).
Modern societies are highly dependent on the physical

and electronic links between larger and larger regions,
and especially upon the transport of matter and energy.
The timeliness and reliability of such systems is depen-
dent on the predictability of environmental conditions.
However, our infrastructure and agriculture have been
developed to function under the benign conditions that
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have typified the Holocene, and the last 10,000 years. It
is thus of considerable concern that human activities
have begun to alter the Earth’s climate and biogeochem-
istry, threatening to plunge us into an era of unpredict-
ability in all Earth systems. It is not certain that we will
be able to adapt quickly enough to accommodate these
changes. The scale and speed of change has led to the
proposal that we are moving into a new epoch, termed
the Anthropocene, or literally, the ‘Age of Man’ (Crutzen
2002; Steffen 2006; Steffen et al. 2007).
So what is the evidence that we should recognize the

current era as a new geological epoch? What are the key
atmospheric, biotic and environmental changes that have
already occurred, and what changes can we expect in the
future? Can we actually predict the unpredictable? The
destabilization of key planetary systems may have cata-
strophic consequences for humanity, and yet current
policies of social and economic development often oper-
ate in an arena of selective blindness to looming pla-
netary disasters (Stern 2007). Strategies for policy and
governance must be far more responsive to the current
and ongoing destabilization of planetary scale processes
if humanity is to deal successfully with the predicted rate
of environmental change (Biermann 2012). Furthermore,
the science of global change must be communicated
in language that is concise and clear, such that non-
specialists can understand it, yet still be accurate. Here we
review recent literature on the Anthropocene, and the in-
teractions between the various phenomena contributing
to global change.

The History of the Anthropocene
The idea that human activities have the power to affect
Earth’s systems was recognized in the late 1800s by
the geologist Antonio Stoppani, who coined the term
‘Anthropozoic Era’ to highlight this conclusion (Crutzen
2002). The term ‘Anthropocene’ was first used by Eugene
Stoermer, and subsequently popularized by the atmos-
pheric chemist and Nobel Prize laureate Paul Crutzen
(Crutzen 2002). The Anthropocene may soon become
an official epoch, since a proposal to formalise it was
made to the Stratigraphy Commission of the Geolo-
gical Society of London in 2008, resulting in serious
consideration for its acceptance as an epoch in the
geological time scale (Zalasiewicz et al. 2008; Zalasiewicz
et al. 2010).
Crutzen dates the beginning of the Anthropocene to

the late 18th century when atmospheric concentrations
of carbon dioxide and methane began to rise signifi-
cantly. Other writers have suggested that the Anthropo-
cene could be dated to as long as 8,000 years ago, driven
by clearing of forests and agriculture (Ruddiman 2003;
Ruddiman 2013). However, the 18th century date seems
a reasonable compromise, since this date coincides with
the invention of the steam engine and the industrial
revolution, and corresponds to increased carbon emis-
sions by humans.

Biotic and Geochemical Markers of the Anthropocene
The most compelling argument for the erection of the
Anthropocene as a new epoch relies on projecting our-
selves forward in time, and asking if future geologists
will be able to detect a stratigraphic boundary that de-
fines a transition from the Holocene (Zalasiewicz et al.
2011; Gale and Hoare 2012; Brown et al. 2013). To this
end, a number of key processes have been identified as
‘Planetary Boundaries’, representing thresholds below
which humanity can safely operate, and beyond which
the stability of planetary-scale systems cannot be relied
upon (Rockstrom et al. 2009a; Rockstrom et al. 2009b).
Transgressing these boundaries may leave a clear record
in the geological column.
Nine distinct planetary boundaries have been sugges-

ted, each based on the unacceptable economic, social
and environmental risks that humanity faces should they
be crossed. For each of these boundaries attempts have
been made to estimate the tipping points, beyond which
abrupt and irreversible environmental changes might
occur. There is uncertainty about many of these boun-
daries, because we do not have enough data and we lack
a comprehensive understanding of the complex feed-
back mechanisms that maintain resilience and stability
in biophysical systems (Rockstrom et al. 2009a). Neverthe-
less, we should operate from the precautionary principle
that abrupt and catastrophic changes in earth systems are
likely if humanity continues its current scale of activities.
The key planetary boundaries, and their potential con-

sequences, are as follows:

Climate change
Humans have had a significant effect on global carbon
cycling. Emissions of carbon dioxide into the atmos-
phere have raised its concentration to a level higher than
at any time in the last 800,000 years. Carbon isotope
chemistry was used to mark the boundary between the
Paleocene and Eocene epochs, so a carbon signature also
seems appropriate to mark a transition to the Anthropo-
cene (Steffen et al. 2011a).
Thirty years ago there were suggestions that the Earth

was warming, based on the known linkage between glo-
bal mean temperature and the atmospheric concentra-
tion of carbon dioxide. Despite political opposition and
the efforts of climate sceptics, this conclusion is now
certain (Agnihotri and Dutta 2013; IPCC 2007). The
boundary for deleterious climate change forced by ac-
cumulation of carbon dioxide was set at 350 ppm, and this
boundary has already been transgressed (Steffen et al.
2007; Rockstrom et al. 2009a).
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Climate change has the potential to affect every as-
pect of our economy and society. Extreme weather
events, such as hurricanes, heatwaves and droughts will
increase in intensity and frequency over the next deca-
des (Repetto and Easton 2010; Coumou and Rahmstorf
2012). Around the globe, weather related events already
cause more casualties than other catastrophes (Bouwer
2012), and have serious human health consequences
(Knowlton et al. 2011). In addition to the direct human
toll, extreme weather disrupts or destroys infrastructure.
For instance, in October 2012, Hurricane Sandy resulted
in the cancellation of almost 20,000 airline flights and
the closure of bus, rail and ferry services (Kaufman et al.
2012). Total damages from Sandy were estimated to lie
between 30 and 50 billion dollars (Tollefson 2012). Glo-
bally, economic losses caused by extreme weather events
are rapidly increasing, and will continue to rise over the
next decades (Bouwer 2012). Strategic decision making
by businesses should anticipate and incorporate the need
for organizational adaptation in the face of this rapidly
changing climate (Linnenluecke et al. 2012).
Predicting the impacts of climate change is difficult

because the likely effects are not uniform in either loca-
tion or direction. For instance, weather in north-western
Europe is dependent on the effect of the warm North
Atlantic Drift. Changes in this thermohaline circula-
tion caused by alterations in rainfall patterns could,
ironically, lower temperatures by as much as 10°C
across NW Europe, and such changes might be irre-
versible (Rahmstorf 2000).
The last decade has seen an increase in the frequency

and severity of heatwaves and droughts (Coumou and
Rahmstorf 2012), both of which have serious implica-
tions for food production, human health, and infrastruc-
ture (Fischer and Schar 2010; Anderson and Bell 2011;
Battisti and Naylor 2009). There will also be a substan-
tial increase in the frequency of intense tropical cyclones
and the attendant damage to cities and coastal settle-
ments. Category 4 and 5 storms are expected to double
in frequency by the end of the century (Bender et al.
2010; Knutson et al. 2010). There is also good evidence
that the frequency of great floods has increased signifi-
cantly over the last 100 years (Milly et al. 2002). Such
floods damage settlements, impact agriculture and pro-
mote the spread of waterborne diseases (Few 2012).
Rising global temperatures lead to proportional rises

in sea level, due to thermal expansion of the oceans
and melting of ice fields (Hodgson 2011; Nicholls and
Cazenave 2010). Rates of sea level rise are currently
3.4 mm/year with an estimate of a total rise of between
0.5 and 1.4 m by 2100 (Rahmstorf 2007; Rahmstorf
2010; Schaeffer et al. 2012). Impacts on humans will in-
clude inundation of low lying areas and loss of islands
with low elevation. Although such effects are restricted
to coastal areas, these are often highly productive eco-
systems with a consequently high population density.
Densely populated cities such as Tokyo, Shanghai and
Bangkok exhibit the additional problem of land sub-
sidence, exacerbating the effects of rising sea levels
(Nicholls and Cazenave 2010). Estimates suggest that
some 10 to 50 million people in the Southeast Asian re-
gion alone will become refugees from sea level rise
(Wetzel et al. 2012). Many of the regions most at risk
also have an inherently low capacity for adaptation to
rising sea levels (Nicholls and Cazenave 2010), and the
greatest impacts will disproportionately affect those least
responsible for climate change.
Worldwide, populations in the hazard zone for 1000

year storm surges are estimated to reach 400 to 600 mil-
lion by 2050. As a contemporary example, in October
2012 Hurricane Sandy caused record storm surges in
New Jersey, NY City, Connecticut, and Rhode Is. Other
significant effects of sea level rise include loss of wet-
lands, erosion and salt-water intrusion into freshwater
systems (Nicholls and Tol 2006), thus having flow-on ef-
fects on other planetary boundaries such as biodiversity,
land use and fresh water resources.
Further effects of climate change include an increase

in the frequency and severity of fires, loss of alpine habi-
tats, movement of vegetation zones and disruption to
agriculture (Hughes 2003). Declines in crop yields due
to climate change are already apparent, with a global
drop in wheat and maize production of 5.5 and 3.8% re-
spectively, despite improvements in agricultural technol-
ogy over the last 30 years (Lobell et al. 2011). Modelling
suggests that climate change will result in yield declines
of 30-80% in US production of corn and soybeans by the
turn of the century (Schlenker and Roberts 2009). Long
term global trends are more difficult to predict because
effects differ significantly from region to region (Piao
et al. 2010; Schlenker and Lobell 2010). World produc-
tion of food may remain stable, but declines in yield will
disproportionately affect developing nations, resulting in
higher prices, increased risks of food shortages and in-
creasing inequity in food distribution (Parry et al. 2004;
Lobell et al. 2008).

Ocean acidification
Nearly one third of the carbon dioxide released by an-
thropogenic activity is absorbed by the oceans. But for
this fact, current atmospheric CO2 concentrations would
be higher than they already are. However, CO2 uptake
lowers the pH and alters the chemical balance of the
oceans, in particular the solubility of calcium salts (Doney
et al. 2009). This phenomenon is called ocean acidifica-
tion, and is occurring at a rate faster than at any time in
the last 300 million years (Hönisch et al. 2012). We are
now at risk of transgressing the pH boundary where the
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calcium carbonate and aragonite skeletons of marine life
will simply dissolve (Rockstrom et al. 2009a). It is a sobe-
ring thought that the great Permian extinction event,
where 96% of species were lost, was associated with ocean
acidification (Barnosky et al. 2011; Harnik et al. 2012).
The economic costs of ocean acidification encompass

a number of biological effects, including decalcification
of the skeletons of molluscs, echinoderms, foraminifera,
coralline red algae and tropical corals, and effects on
reproduction of plankton, molluscs and echinoderms
(Doney et al. 2009; Lurling and De Senerpont Domis
2013; Schlegel et al. 2012). Many of these groups contain
keystone species, whose loss will permanently alter mar-
ine ecosystems.
Corals reefs harbor a significant proportion of marine

diversity. Ocean acidification threatens to dissolve coral
skeletons and convert reefs into algal dominated systems
(Hoegh-Guldberg et al. 2007; Pandolfi et al. 2011). The
economic impact on ecosystem services provided by
reefs are difficult to assess (Stoeckl et al. 2011), but there
will be serious consequences for fisheries, tourism and
coastal protection (Hoegh-Guldberg et al. 2007). Esti-
mates suggest that current global loss in shellfish pro-
duction due to ocean acidification amounts to some 6
billion dollars (US) per annum, and that this could rise
to $100 billion, based on increased demand in the Asia-
Pacific region (Narita et al. 2012). Degradation of marine
habitats, loss of ecosystem services and the resultant
decline in harvests are likely to have disproportionate ef-
fects in some regions, particularly those with high depen-
dency on marine resources (Cooley and Doney 2009). The
number of peer-reviewed analyses on the economic im-
pact of ocean acidification is still small, but is likely to in-
crease sharply, given the rapid rise in research papers now
being published in this area. Appropriate methods for es-
timating costs have been identified and applied to eco-
system services in Norwegian waters. There were both
positive and negative effects of acidification, but overall
there was a large net negative outcome (Armstrong et al.
2012). In the final analysis, protection of the ocean may
be more important than protection of atmosphere or
land because it stores more carbon, mediates climate
variability and provides essential ecosystem services
(Steffen et al. 2011b).

Ozone depletion
The original appearance of the ozone layer allowed the
emergence of life on land, because ozone in the strato-
sphere filters out ultraviolet radiation from the sun. Hu-
man use of chlorofluorocarbons and other compounds
has depleted ozone, and resulted in the thinning of the
ozone layer in the polar stratosphere. This exposes hu-
mans to health risks and has negative effects on marine
ecosystems. Ozone depletion is also the major cause of
changes in the pattern of atmospheric circulation in the
southern hemisphere (Portmann et al. 2012). Climate mo-
dels suggest that ozone depletion led to a significant in-
crease in rainfall across SE South America during the last
40 years of the 20th century. Any recovery of the ozone
layer in the future may thus lead to a drying of this region,
with consequent adverse effects on agriculture and econ-
omies (Gonzalez et al. 2013).
Recognition of the ozone depletion problem led to an

international agreement (the Montreal Protocol), and as
a consequence, ozone-depleting halocarbons have de-
clined from their peak in 1992–1994. Globally, we are
now unlikely to pass the tipping point for ozone deple-
tion, largely based on acceptance of key scientific find-
ings, and the resulting international agreements (Velders
et al. 2007; Mäder et al. 2010). Although ozone depleting
chemicals will take many decades to degrade, informed
science and political will have changed human behaviour
so successfully as to avoid transgressing the tipping
point for ozone depletion (Rockstrom et al. 2009a).
However, the reduction of halocarbon emissions will
not solve the problem entirely, since anthropogenic ni-
trous oxide emission also affects ozone levels (Portmann
et al. 2012).

Atmospheric aerosol loading
Aerosols are particles suspended in the atmosphere.
Since the industrial revolution the concentration of
aerosols has doubled (Tsigaridis et al. 2006). There is
considerable evidence that aerosols alter the way precipi-
tation forms from clouds, and hence human emissions
of aerosols have the potential to significantly change
rainfall and weather patterns (Rockstrom et al. 2009a).
Simulations suggest that aerosol loading of the atmos-
phere will change the timing, intensity and extent of the
South Asian monsoon, affecting rainfall over East Asia
(Lau et al. 2006; Lewis et al. 2011). Thus one of the most
densely populated regions of the planet will suffer most
from unpredictable rainfall. Aerosols may also alter the
distribution of primary production in marine ecosystems,
either enhancing or lowering production dependent on
the metal content of the aerosol (Paytan et al. 2009).
Some 80% of populations in Asia are exposed to aerosol

concentrations that exceed WHO guidelines (Carmichael
et al. 2009). Exposure to the particulate matter in polluted
air causes cardiac and respiratory disease, amounting to
some 500,000 deaths per year (Nel 2005). The combined
health costs due to particulate pollution in Beijing amount
to between US$1.6 and 3.6 billion annually, equivalent to
over 6% of this cities gross domestic product (Zhang et al.
2007). Globally, the health impacts and consequent eco-
nomic costs of aerosol emissions are estimated to lie be-
tween US$120 and 510 billion annually (Selin et al. 2011).
Aerosols also affect other organisms, including crops,



Gillings and Hagan-Lawson Earth Perspectives 2014, 1:2 Page 5 of 11
http://www.earth-perspectives.com/1/1/2
forests and aquatic animals, primarily through the acid
rain generated by nitrogen and sulphur oxides. Because
aerosols are composed of diverse compounds with differ-
ent origins, half-lives and potential impacts, it is difficult
to predict their effects with any certainty, although some
progress is being made (Jimenez et al. 2009).

Phosphorus and Nitrogen cycles
Phosphorus and nitrogen are key elements for growth of
living things. Humans have successfully manipulated
their availability to improve the productivity of agricul-
tural systems. Prior to the industrial era, the vast ma-
jority of biologically available nitrogen was fixed from
atmospheric nitrogen via bacterial activity. By tapping
into fossil fuels and as a result of agricultural activities,
humans now fix more atmospheric nitrogen into bio-
logically available forms than the quantity fixed by all
natural processes combined (Rockstrom et al. 2009a;
Gruber and Galloway 2008). Industrial fixation of nitrogen
is accomplished via the energy intensive Haber-Bosch
process, while other human-driven processes such as cul-
tivation of legumes, fossil fuels and burning of biomass
add to the total. The planetary boundary for the nitrogen
cycle has already been passed (Rockstrom et al. 2009a).
Nitrogen flux through the biosphere is primarily a

biological process, while phosphorus availability arises
slowly through geological weathering. Humans sidestep
the phosphorus bottleneck by mining and distribution of
fertilizer onto agricultural lands, thus inadvertently in-
creasing the flow of phosphorus into the oceans. While
the planetary boundary for phosphorus is unlikely to be
passed in the near future (Rockstrom et al. 2009a), the
production of phosphorus for fertilizer will peak in 2030,
before peak demand occurs. In a world where phos-
phorus supply is limited, there are serious implications
for global food security (Cordell et al. 2009).
Increasing levels of phosphorus and nitrogen in soils

and waters causes soil acidification, eutrophication of
waterways and is associated with harmful algal blooms
(Anderson et al. 2008; Bennett et al. 2001). Eutrophica-
tion affects waterfront real estate values, recreational
water use, freshwater availability and expenditure on
species recovery programs. In the US, the combined
costs arising from eutrophication have been estimated as
US$2.2 billion per year (Dodds et al. 2008). In England
and Wales, the damage costs of eutrophication are in
the range of US$105-160 million per year (Fankhauser
2009). Excess phosphorus flowing into the oceans also
causes oceanic anoxia, associated with mass extinction
events (Barnosky et al. 2011; Handoh and Lenton 2003).
Guidelines and protocols for lowering the release of nu-
trients into ecosystems must be widely adopted to lessen
the economic impact of eutrophication (Lewis et al.
2011; Fulweiler et al. 2012).
Global freshwater use
Humans die in several days if water is not available. Be-
cause of this, access to fresh water is regarded as a uni-
versal human right (Füssel et al. 2012). The water bodies
that we depend on also connect the atmosphere, soils,
and the oceans, and are indispensable for the func-
tioning of terrestrial ecosystems. However, freshwater
systems can no longer be thought of as being naturally
regulated. Human use of freshwater and our control of
river flows have fundamentally altered the water cycle at
both local and regional scales (Meybeck 2003). Extrac-
tion of water by humans results in 25% of rivers running
dry before they reach the ocean (Falkenmark and Molden
2008; Molden 2007). Further, water bodies are subject to a
variety of environmental insults including salinization,
acidification, and contamination with chemical and micro-
bial pollutants (Meybeck 2003).
Fresh water resources are running out. Many popu-

lations live under water stress, and 80% of the world’s
population face threats to water security (Vorosmarty
et al. 2000; Vorosmarty et al. 2010). Limitations on water
availability have led to the concept of ‘peak water’, split
into three components: renewable freshwater flow; non-
renewable groundwater resources; and peak ‘ecological’
water. Once the damage cost of any additional human
use of water exceeds the benefits, we have passed the
point of peak ecological water. Peak water use for at
least one of these three components has been passed for
major river basins and aquifers all across the globe
(Gleick and Palaniappan 2010).
The uncertainty of climate change places the predict-

ability and reliability of water resources in doubt (Piao
et al. 2010; Füssel et al. 2012), and the economic impacts
scale with climate change. Damage costs for North
America are estimated at about US$3 billion for a 1°C
increase in global mean temperature, scaling to US$7 -
16 billion at 2.5°C. Globally, costs to water resources are
estimated at some US$47 - 84 billion under a 4°C tem-
perature increase (Tol 2002).
In addition to the central role of water in food produc-

tion, aquatic systems harbour valuable biodiversity and pro-
vide essential ecosystem services (Vorosmarty et al. 2010;
Wilson and Carpenter 1999). Increasing pressure on water
availability will have serious economic consequences for
food production and human health. Because of the trans-
national nature of rivers and water bodies, action to protect
this resource requires inter-regional and international
agreements (Falkenmark and Lundqvist 1998). Adaptive re-
sponses to less reliable and diminishing water resources will
require critical improvements in governance (Hill 2013).

Land system change
As human population increases, there is more pressure
to convert landscapes into croplands, pastures and urban
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landscapes. Expansion of agriculture increases the risk of
undermining sustainability by threatening biodiversity
and affecting both climatic and hydrological cycles (Pielke
et al. 2003; Sterling et al. 2013). Changes to land cover
driven by deforestation or urbanization interact with
climate and temperature, in some cases forcing climate
change to the same degree as carbon dioxide emissions.
Land use change complicates global climate predictions,
but its inclusion may improve modelling at more regional
levels (Avila et al. 2012).
Some 12% of the land surface is now under cultivation

(Foley et al. 2005), and the suggested planetary boun-
dary of 15% is likely to be surpassed in the near future
(Rockstrom et al. 2009a). The current reserves of land
suitable for conversion cropping are predicted to be
exhausted some time between 2020 and 2050 (Lambin
and Meyfroidt 2011). Consequently, some expansion is
likely to be forced onto more marginal land, creating
further unpredictable feedbacks on biodiversity, hydro-
logy and climate. Additional land use change will be
forced upon us by flooding of low lying land during sea
level rise. Conversion of dryland by such flooding, and
the subsequent cost to ecosystems amount to US$14 bil-
lion and $41 billion per year respectively (Fankhauser
1995).
Conversion of biomes to undesirable states, for ex-

ample forest to desert, can occur rapidly and unpredic-
tably when thresholds are crossed. For instance, small
increases in the clearing of Amazonian rainforest may
cause an irreversible conversion into semi-arid savannah
(Rockstrom et al. 2009a; Foley et al. 2005). Attention to
minimising land degradation, conservation of irrigation
water and protection of the most productive croplands
from urban development will partially mitigate the prob-
lem. Similarly, the development of agricultural practices
that mimic complex natural ecosystems will minimise
the impact of land use (Ericksen et al. 2009). Improved
efficiency of land use has dual outcomes of increased
agricultural production and forest conservation (Lambin
and Meyfroidt 2011). However, continuing human ef-
fects on land systems are likely to combine with climate
change to convert land systems into less desirable states.

Loss of biodiversity
Transitions between major geological eras are often
characterized by loss of species. When more than 75% of
species are lost in a geologically short time period, this is
known as a mass extinction. There have been five such
mass extinction events over the last 540 million years. In
modern times, global biodiversity is declining, via spe-
cies extinction, at rates that are orders of magnitude
higher than might be expected from the fossil record.
The rate of decline is not slowing, despite recognition of
the problem (Butchart et al. 2010). This has led some
scientists to suggest that we are currently in a sixth mass
extinction, fully comparable with those in the geological
past. Recent analysis suggests that the current loss of
species, while dramatic, does not yet qualify as a mass
extinction. However, ongoing losses, particularly of spe-
cies currently recognized as critically endangered, would
push us into a state of mass extinction similar in mag-
nitude to the ‘big five’. Recovery from such catastro-
phic species loss would probably take millions of years
(Barnosky et al. 2011). It is a sobering thought that the
causes of past mass extinctions are eerily similar to key
environmental pressures now facing humanity. These in-
clude ocean acidification, climate change, changes in at-
mospheric CO2 levels, loss of habitat, and deep water
anoxia (Barnosky et al. 2011; Harnik et al. 2012).
Extinction of species and loss of biodiversity have mul-

tiple impacts on humanity. There is now consensus that
biodiversity increases the efficiency of communities in
key ecosystem processes, improves the stability of ecosys-
tem functions, and that diverse communities are more
productive. Loss of biodiversity has direct economic ef-
fects including decreasing the yield in commercial crops,
fodder, forestry and fisheries (Cardinale et al. 2012). Over-
exploitation of natural resources puts further pressure on
biodiversity. For instance, there has been a significant de-
cline in fisheries catches since 1990, despite a doubling of
effort (Worm and Branch 2012).
There are numerous conceptual issues surrounding

the costs of saving species versus the benefits. Extinction
is irreversible, and the effects of individual species loss
are uncertain, so the economic costs cannot be accur-
ately estimated. It is difficult to place a value on an eco-
system or a species, but rough estimates based on usage
and existence can be used to calculate that a global in-
crease in temperature of 1°C will cost US$50 billion per
year in terms of lost biodiversity and resultant ecosystem
services (Tol 2002).
The existence value of a species is essentially unmeas-

urable (Bishop 1978). Further, the effects of losing even
one species from an ecosystem are difficult to predict.
The magnitude of effects on ecosystem functions in-
creases in a non-linear manner as ever more biodiversity
is lost, in part because the majority of species depend on
symbioses with other species. Simplification of ecosys-
tems by loss of species may alter their functioning, such
that the net effect might be equivalent to effects wrought
by ocean acidification and climate change (Reich et al.
2012). Consequently, loss of biodiversity drives changes
in ecosystem productivity, decreasing stability and resili-
ence (Hooper et al. 2012).

Chemical pollution
Humans synthesize and distribute an enormous variety
of xenobiotic compounds, with some 80,000 chemicals
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available in the marketplace. We also mine and dissem-
inate various toxic compounds. In the past, this has re-
sulted in local or regional pollution with heavy metals,
synthetic organic compounds and radioactive materials.
The extent of such activity means that signatures of
chemical pollution are now evident at a global scale, and
will be detectable in the geological record.
Because of the diversity of potential pollutants and un-

certainty as to their effects, it is difficult to set a universal
planetary boundary for chemical pollutants (Rockstrom
et al. 2009a). Since chemical pollution encompasses di-
verse compounds in diverse habitats, there are no univer-
sal estimates of the costs of anthropogenic pollution, but
rather, key studies dealing with single types of pollutants
in particular regions. The global costs of air pollution by
nitrogen and sulfur oxides were estimated at US$15 billion
per year (Fankhauser 1995), excluding the costs of acid de-
position. Clearly this estimate overlaps with the costs of
aerosols, of which these oxides are major components.
Useful global estimates could be made from the clean-up
costs for legacy sites and the costs of pollutant capture,
but the ongoing and diffuse nature of chemical pollution
makes economic calculations problematic.
We should be particularly concerned about pollutants

that have direct biological effects at low concentra-
tions, such as endocrine disrupting chemicals (Diamanti-
Kandarakis et al. 2009) and antibiotics (Gillings 2013;
Gillings and Stokes 2012), since these have the po-
tential to alter population assemblages and affect bio-
diversity. There have been successful bans on particular
organic pollutants, such as dioxins, PCBs, DDT, and other
pesticides. These bans have been based on investigations
into their effects on humans and other organisms. Assem-
bling equivalent information for the enormous diversity of
compounds currently generated by humans is a daunting
task, and is complicated by the potential for interactions
between compounds. Certainly pollutants have effects on
both ecosystem functioning and on human welfare. Expo-
sure of children to low concentrations of compounds with
neurotoxic effects may be leading to a global epidemic of
developmental disorders (Grandjean and Landrigan 2006;
Grandjean et al. 2008), and many pollutants have the
potential for bioaccumulation at higher trophic levels
(Arnot and Gobas 2004).

Conclusions
Humans are having significant effects at a global scale,
and the magnitude of these effects is sufficient to suggest
we are entering a new geological epoch, the Anthropo-
cene. This new epoch will be characterized by a shift
away from the stable conditions that have typified the
last 10,000 years, and usher in a period of unpredictabil-
ity that threatens to destabilise human economics and
society. It is clear that the comparative stability that has
typified the last 10,000 years will not continue into this
century, and that we face a future where business as
usual will not be possible.
Attempting to estimate the absolute costs of living in

the Anthropocene is difficult, largely because the poten-
tial magnitude of environmental effects are hard to
quantify, as are the flow-on costs of unpredictability in
weather, nutrient cycling and ecosystem services. Here
we have dealt with these potential costs via the frame-
work of the planetary boundaries defined by Rockstrom
et al. (Rockstrom et al. 2009b), however this framework
does not encompass all the costs inherent in the transi-
tion to the Anthropocene. For instance, the contribu-
tions of cultural heritage such as landscape aesthetics,
the cultural significance of particular sites, or the intrin-
sic value of outdoor recreation are not well integrated
into analyses of ecosystem services (Daniel et al. 2012).
A number of groups are actively working to incorporate
such values into ecosystem assessments (Tengberg et al.
2012; Chan et al. 2012).
The terms ‘ecology’ and ‘economics’ both use the same

Greek root as a prefix (oikos = home), and it is surpris-
ing that there has not been more cross-disciplinary work
between the two fields. Indeed, the value of ecosystem
services, essential for human welfare, was not estimated
until 1997 (Costanza and Déarge 1997). The value of
such services was placed in the range of US$16-54 tril-
lion dollars, most of which lay outside the market. By
comparison, at that time the global gross national pro-
duct was US$18 trillion.
Since 1997, there has been more attention paid to

valuing the world’s natural capital, and examining the
trade-offs between human welfare and the environment
(Farber et al. 2002; Fisher et al. 2011). Particular at-
tention has been paid to biodiversity and conservation
(Naidoo et al. 2008), and the costs associated with loss
of forest ecosystem services (Chiabai et al. 2011). There
has also been critical analysis of the interactions between
ecosystem services, policy and economics, and linking
these to the costs of human activities (Balmford et al.
2011; Farley 2012; Kinzig et al. 2011). It is clear that
much more attention needs to be paid to the real costs
resulting from human exploitation of natural resources,
and this in turn will require closer collaboration between
environmental scientists and economists. Finally, while
science can inform and predict, its practitioners will in-
creasingly have to deal with the more difficult issues of
value, amenity and ethics (Seidl et al. 2013).
Dealing with the instability and environmental conse-

quences of the Anthropocene will require cooperation
and coordination between scientists, policy makers, gov-
ernments and the general public. However, governance
is required at time scales beyond past experience, be-
cause the earth systems we are affecting operate at a
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time scale that is mismatched with human decision mak-
ing and our economic systems (Steffen et al. 2007). The
time lag between cause and effect for complex earth
systems mean that likely effects are already mortgaged
into the future, and preventing the causes now will not
stop the changes that are already in train (Steffen et al.
2011a). Nevertheless, whole society and global responses
are needed to prevent even more catastrophic changes
to earth systems. Such responses must include popula-
tion control, greatly reduced consumption of resources,
sustainable energy generation, conservation of the na-
tural world and generally better management of all hu-
man activities. These actions are essential if we are to
maintain human welfare on a less predictable planet
(Tickell 2011).
Effective management of earth systems will require

changes to both national and international organizations
(Biermann et al. 2012), and to aid this process an Earth
System Governance Project has been proposed (Biermann
et al. 2010). Clearly, adaptive responses have to be exa-
mined at local, regional and global scales, and further,
because the concept of planetary boundaries crosses
environmental, social and economic systems, communica-
tion between different fields must be improved, to ad-
equately represent each discipline’s perspectives (Nilsson
and Persson 2012; Veldkamp et al. 2011). The Anthropo-
cene concept offers the ripe opportunity, and indeed, the
necessity, for truly transdisciplinary research that tran-
scends sociology, politics, economics and environmen-
tal science (Seidl et al. 2013; Hoban and Vernesi 2012;
Palsson et al. 2013). The planetary boundaries central to
the Anthropocene concept imply social tipping points that
accompany the planetary tipping points, creating a re-
search opportunity for fusing the work of those interested
in politics, governance, human psychology and ecology
(Biermann 2012). The true economic costs of the Anthro-
pocene are yet to be properly quantified for any one of the
planetary boundaries, and this is also an area that needs
immediate attention from diverse research standpoints.
Finally, solutions based on geoengineering rather than at-
titudinal and social change need to be examined in terms
of their ecological, social and economic cost (Galaz 2012).
Many human civilizations have collapsed in the past,

usually due to complex combinations of environmental,
social and economic factors (Butzer and Endfield 2012;
Diamond 1994). However, modern society has the ad-
vantage of hindsight, and knows the kinds of disasters
that have overtaken previously successful civilizations.
We owe it to future generations to not repeat the mis-
takes made in the past (Lawson 2011), and to invest in
the future of our planet now, rather than pay a higher
price later. Acceptance of the risks we face is a signifi-
cant hurdle to overcome, since individuals and institu-
tions are in a state of collective cognitive dissonance
(Steffen et al. 2011a), where unpalatable facts are actively
ignored, or worse, distorted and ridiculed. The folly of
using growth as a measure of success needs to be more
widely appreciated, since continuous growth in human
activity is inimical to the natural processes upon which
human welfare depends (Kosoy et al. 2012). Current pol-
icies tend to ignore intangible and long-term costs, in-
cluding those of environmental degradation. Unless we
consider the true costs of consumption by placing real
values on natural capital, we run the unacceptable risk
of squandering our inheritance.
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