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We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within
the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global
climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not
permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics
models. Subsetting inherently leads to a loss of information but can free up resources to explore important
uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM
Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and
precipitation change within the growing season while maintaining information about the probability that basic
classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM
ensemble. We demonstrate the selection methodology for maize impacts in Ames, lowa, and discuss limitations
and situations when additional information may be required to select representative GCMs. We then classify 29
GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface
moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we
employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and
greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative
basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous
assessments selected solely on availability of scenarios, and may be extended for application to a range of scales
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Introduction

Societal applications of climate change information are
driven by the needs of stakeholders deciding upon par-
ticular adaptation, mitigation, policy, or risk management
strategies. Model-based projections of climate changes
and related uncertainties form a core component of these
climate impact applications, however uncertainty may also
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be introduced by sector models (e.g., crop, livestock,
health, ecosystem, fisheries, energy, or water resource
models), biophysical or socioeconomic scenarios (e.g.,
greenhouse gas concentrations; regional development
pathways), and the economic models upon which many
decisions are evaluated. Connecting climate models,
sector impact models, and economics models results in an
integrated assessment framework capable of exploring the
societal ramifications of climate impacts as well as oppor-
tunities to build resilience through interventions under a
risk management framework. The Agricultural Model
Intercomparison and Improvement Project (AgMIP) was
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developed to facilitate best practices and collaborative de-
velopment of agricultural models with the aim of inform-
ing stakeholder decisions across a variety of regions,
scales, models, and scenarios (Rosenzweig et al. 2013,
2015, 2016). One goal of AgMIP is to provide guidance on
the creation of climate change scenarios for agricultural
experts unfamiliar with the climate modeling community.

Impact assessments across sectors have too often been
influenced by selection bias, leading to inconsistencies
across studies and confusion among policymakers.
White et al. (2011) revealed large differences across crop
modeling studies in the number and types of global
climate models (GCMs) used, with many using a small
number of models and GCM selection often influenced
by the availability of output. The first phase of the
Inter-Sectoral Impacts Model Intercomparison Project
(ISI-MIP; Warszawski et al. 2014) utilized a common
set of 5 GCMs for all sectoral impacts assessments
owing to the need for consistency across regions and
sectors. The ramifications of choosing this subset,
based in part upon which GCMs available at the
time, continues to be explored (McSweeney and Jones
2016). Early AgMIP regional integrated assessments
also used 5 GCMs selected according to prominence
in publications, length of participation in CMIP,
spatial resolution, and historical monsoon patterns
(Ruane et al. 2015b).

A common limitation in AgMIP and related studies
stems from the overwhelming number of possible
combinations of individual elements within an integrated
assessment framework, leading to a prohibitive number of
simulations. For example, ongoing AgMIP work across
sub-Saharan Africa and South Asia seeks to utilize infor-
mation from a set of 29 GCMs, 3 time periods, 2 green-
house gas concentration pathways, 2 climate scenario
generation methodologies, 3 adaptation scenarios, 2 agri-
cultural development pathways, at least 2 crop models,
and 40 or more households representing the distribution
of impacts for a given region. Together, this would be an
impractical number of simulations to conduct and analyze
(at least 29x3x2x2x3x2x2x40 = 167,040) for each crop
species examined, so representative subsets are required
wherever possible.

Subsetting GCMs necessarily leads to a loss of informa-
tion, which begs the question: what types of information
are most important to maintain? In the end this is a sub-
jective decision that is best decided in discussion between
researchers and stakeholders, however it must be justified
(Knutti et al. 2010a) and physical and statistical relation-
ships provide useful guidance.

The most prominent information for assessing sectoral
climate impacts in a given region remain projected
temperature change and precipitation change (the con-
centration of greenhouse gases such as carbon dioxide
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can be taken directly from driving scenarios). These
quantities are indicative of large-scale changes in energy
and water cycles in a region, and many other climate
variables are closely correlated with these quantities.
Even an increasing emphasis on extreme events requires
the context of long-term shifts in mean temperature and
precipitation, which also form the basis of intuitive
climate scenario generation methodologies such as the
“delta approach” wherein mean monthly temperature
and precipitation changes are imposed upon historical
observations (Wilby et al. 2004). The delta approach was
the most common climate scenario generation method-
ology used in the White et al. (2011) review of agricultural
impact models. Many impact sector models also respond
strongly to mean temperature and rainfall shifts, allowing
for the development of simple but effective emulators
(e.g., Ruane et al. 2014; McDermid et al. 2015a; Howden
and Crimp 2005).

Characteristics of the overall distribution of projections
from the full GCM ensemble are priority information to
maintain, as multi-model ensembles generally outperform
individual models when validated across many observa-
tions (though not necessarily for any single observation).
This has been illustrated in many studies within the cli-
mate modeling community (Reichler and Kim 2008; IPCC
2010; Flato et al. 2013) and for impacts models in various
sectors including agriculture (Asseng et al. 2013; Bassu
et al. 2014; Martre et al. 2015; Li et al. 2015). The overall
spread and skewness of projections is also a worthwhile
indication of model-based uncertainty, confidence, and
the range of plausible outcomes.

This study describes the Representative Temperature
and Precipitation (T&P) GCM Subsetting Approach that
may be used to select a practical and coherent subset of
GCMs for use in regional integrated assessments that
conserves resources and captures the general physical
and statistical uncertainty in projections. Here we aim
for 5 GCMs given typical resource requirements within
recent AgMIP activites, although it is important to resist
the temptation to boil this down further as the informa-
tion loss gradient is increasingly steep at lower numbers.
The goals of the Representative T&P GCM Subsetting
Approach are fivefold:

1) To reduce the number of GCMs required to sample
climate change uncertainty and thereby free up
resources for other elements of a regional integrated
assessment,

2) To focus the GCM selection and assessment process
on the season of interest,

3) To ensure that the assessment framework exposes
the system to major classes of change without
averaging to an extent that temporal and spatial
patterns are not physical,
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4) To avoid the selection of extreme outliers that may
skew results, and

5) To maintain information about overall uncertainty
in GCM projections.

The Representative T&P GCM Subsetting Approach
builds upon the work of Semenov and Stratonovich
(2015), who suggested the use of “climate sensitivity
indices” to subset GCMs based upon annual-mean
temperature and precipitation changes in aggregated
regions around the world. This methodology was devel-
oped independently from a similar approach recently
described by Lutz et al. (2016) that focuses on describing
the limits of an envelope of potential temperature and
precipitation changes and the largest shifts in extremes.
As described below, we add additional guidance on
classes of regional climate change, the maintenance of
uncertainty information from the broader ensemble,
sector specific seasonal focus, a connection to anticipated
scenario generation methods, and coherence across space,
time, and greenhouse gas scenario. We also provide a
regional demonstration, show how this framework may be
applied at global scales, and explore how the perspective
of GCM subset priorities enables statistical and physical
analysis of the ensemble of GCM projections.

It is important to emphasize that selecting a subset of
GCMs to conserve computational and analytic resources
is distinct from efforts to develop unequal weights for
GCMs in order to better capture the signal of future
climate change (e.g., Giorgi and Mearns 2003; Tebaldi
et al. 2005; see reviews in Knutti 2010; IPCC 2010; Flato
et al. 2013). The development of unequal weights is par-
ticularly appealing given that CMIP represents an ensem-
ble of opportunity rather than an ensemble designed to
systematically capture uncertainty around a true projec-
tion. Weighting approaches allow models with substantial
biases to be lowered in empbhasis, although biases in the
historical period do not necessarily reflect biases in cli-
mate response to anthropogenic forcings and it can be dif-
ficult to determine which metrics should form the basis of
weighting. Knutti et al. (2010b) called for the use of multi-
model ensembles but indicate that equal weighting is pre-
ferred until weighting methods can be more fully devel-
oped and validated.

Materials and methods

Climate datasets

The Representative T&P GCM Subsetting Appraoch is
built upon climate change projections provided by state-
of-the-art climate and earth system models such as those
submitted to the Coupled Model Intercomparison
Project (CMIP; Taylor et al. 2012; Eyring et al. 2016) in
support of the Intergovernmental Panel on Climate
Change (IPCC). These projections are then combined
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with a gridded historical climate dataset in order to over-
come common biases in GCM precipitation climatology.
Meteorological observations for the Ames, lowa, example
utilized below were drawn from the Iowa Environmental
Mesonet maintained by Iowa State University.

Future climate projections

This study utilizes 29 GCMs (Table 1) commonly used
within AgMIP for climate change projections from the
Fifth Coupled Model Intercomparison Project (CMIP5;
Taylor et al. 2012). This represents the set of GCMs that:
1) were available (as of May, 2015) on the Earth Systems
Grid; 2) contained daily data from 1980 to 2100; and 3)
included historical and future outputs for both the
moderate and high representative concentration path-
ways (RCP4.5 and RCP8.5, respectively; Moss et al. 2010;
Knutti 2014). Over 40 modeling groups have now con-
tributed results to the Earth Systems Grid. These GCMs
represent a range of institutions, horizontal and vertical
resolutions, components, and climate sensitivities. For
the purposes of this study each GCM is considered to be
equally likely and exchangeable as there is no clear
method to evaluate GCM performance in a climate that
has not yet occurred (Gleckler et al. 2008; IPCC 2010),
and the approach would likely not make sense for per-
turbed physics ensembles of a single GCM. The specific
ensemble members for which GCM groups archived
daily outputs is also likely to affect regional trends
(Sriver et al. 2015), which suggests the continuing need
to analyze many-member ensembles for probabilistic
impacts research.

GCM projections of temperature change are calculated
as absolute differences (future-current) while projections
of future precipitation are calculated as percentages of
the current period (future/current * 100%). When aver-
aging GCM projections of seasonal precipitation changes
over multiple months, historical climate information
over the “current” period (1980-2010) is needed to
recognize that percentage changes in wet months impact
total season precipitation more than changes in dry
months. To demonstrate similar characteristics of GCM
projections, we create simple climate scenarios by im-
posing the temperature changes (an additive factor) and
precipitation changes (a multiplicative factor) upon
historical observations as is done in the “Delta” approach
among many other statistical methods (Wilby et al
2004; Ruane et al. 2015b). Future time periods are
defined as Near-term (2010-2039), Mid-Century (2040—
2069), and “End-of-Century” (2070-2099) as in Ruane
et al. (2015b).

Historical climate data
Local observations of meteorological variables are the
ideal source of historical climate information, however
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Table 1 Summary of 29 CMIP5 GCMs that form the ensemble of climate projections used in this study

GCM Institution Horizontal resolution 2x [CO,] Eq.

climate Sens. (°C)

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization 1.25°% 1.875° 38
(CSIRO) and Bureau of Meteorology (BOM), Australia

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration ~2.8°%28° 28

BNU-ESM College of Global Change and Earth Systems Science, ~28°%x28° 4.1
Beijing Normal University (BNU)

CanESM2 Canadian Centre for Climate Modelling & Analysis ~2.8°%28° 37

CCSM4 US National Center for Atmospheric Research (NCAR) ~0.9°x 1.25° 29

CESM1-BGC US National Science Foundation (NSF), US Department of Energy ~0.9°x 1.25° n.a.
(DOE), and the US National Centre for Atmospheric Research (NCAR)

CMCC-CM Euro-Mediterranean Center on Climate Change ~0.75° % 0.75° na.

CMCC-CMS Euro-Mediterranean Center on Climate Change ~1.9°x1875° na.

CNRM-CM5 France National Centre for Meteorological Research ~14°%x14° 33

CSIRO-Mk3-6-0 Queensland Climate Change Centre of Excellence and Commonwealth ~1.9°x1875° 4.1
Scientific and Industrial Research Organization (CSIRO)

FGOALS-g2 Chinese Academy of Sciences ~2.8°%2.8° na.

GFDL-CM3 NOAA/Geophysical Fluid Dynamic Laboratory (GFDL) 20°x 2.5° 40

GFDL-ESM2G NOAA/Geophysical Fluid Dynamic Laboratory (GFDL) ~2.0°x25° 24

GFDL-ESM2M NOAA/Geophysical Fluid Dynamic Laboratory (GFDL) ~2.0°%x25° 24

GISS-E2-H National Aeronautics and Space Association Goddard 2°%x25° 23
Institute for Space Studies (NASA GISS)

GISS-E2-R National Aeronautics and Space Association Goddard 2°%2.5° 2.1
Institute for Space Studies (NASA GISS)

HadGEM2-AO UK Meteorological Office - Hadley Centre 1.25°% 1.875° na.

HadGEM2-CC UK Meteorological Office - Hadley Centre 1.25°% 1.875° na.

HadGEM2-ES UK Meteorological Office - Hadley Centre 1.25°% 1.875° 46

INMCM4.0 Russian Institute for Numerical Mathematics (INM) 1.5°%2° 2.1

IPSL-CM5A-LR Institute Pierre Simon Laplace (IPSL) ~1.9°x3.75° 4.1

[PSL-CM5A-MR Institute Pierre Simon Laplace (IPSL) ~1.3°%x25° n.a.

IPSL-CM5B-LR Institute Pierre Simon Laplace (IPSL) ~1.9°%3.75° 26

MIROC5 University of Tokyo, Japanese National Institute for Environmental Studies ~14°x ~14° 2.7
(NIES), and Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

MIROC-ESM University of Tokyo, Japanese National Institute for Environmental Studies ~2.8°x~28° 4.7
(NIES), and Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

MPI-ESM-LR Max Planck Institute (MPI) for Meteorology (low resolution) ~19°%1.875° 36

MPI-ESM-MR Max Planck Institute (MPI) for Meteorology (mixed resolution) ~1.9°x 1.875° na.

MRI-CGCM3 Japanese Meteorological Research Institute (MRI) ~1.1°x1.125° 26

NorESM1-M Norwegian Climate Centre ~1.9°%x25° 28

Climate sensitivities represent an equilibrium global mean surface temperature increase resulting from a doubling of pre-industrial CO, concentrations
(from Table 9.5 of Flato et al. 2013; n.a. = not available). References for these models are in Flato et al. 2013, and Ruane et al. 2015b

these are missing or incomplete in many regions and grid-
ded applications require spatial consistency. This study
therefore uses AgMERRA (Ruane et al. 2015a), a hybrid of
the Modern-Era Retrospective-analysis for Research and
Applications (MERRA; Rienecker et al. 2011) and various
gridded and satellite products in order to fill in gaps and
remove common biases needed for global agricultural
modeling. AGMERRA compares favorably with similar cli-
mate forcing datasets and reanalyses, although substantial

uncertainty remains in regions with limited observational
coverage (much of the tropics and many developing
countries; Ruane et al. 2015a). AGMERRA provides a glo-
bal, daily, 0.25°x 0.25° gridded climate dataset spanning
1980-2010 containing maximum and minimum tempera-
tures, precipitation, solar radiation, wind speed, and rela-
tive humidity at the maximum temperature time of day.
AgMERRA has been used in numerous AgMIP activities
(Elliott et al. 2015; Ruane et al. 2015b).
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The representative T&P GCM subsetting approach

To demonstrate the Representative T&P GCM Subsetting
Approach, we consider an integrated assessment using
crop and economic models to assess the impacts of
climate change on maize production systems in Ames,
Iowa, USA (93°45'W, 42°1'N). The framework of this
hypothetical study includes the use of multiple climate
and crop models, as well as a range of climate, agricultural
development, and adaptation scenarios utilizing a regional
economic model. This example is typical of many applica-
tions within AgMIP and similar projects which aim to
provide stakeholders with information about potential
challenges and vulnerabilities in order to aid in investment
and risk management decisions (Antle et al. 2015).

Defining growing seasons

As crop model simulations that drive this analysis
consider only the maize growing season, GCMs must
also be selected based upon their projections of the rele-
vant months. This seasonal focus highlights the differences
between GCMs that would affect the overall outcome of
the integrated assessment while avoiding the influence of
potential biases in months that are never simulated. Here,
we utilize local growing season as defined in the harmo-
nized simulations of AgMIP’s Global Gridded Crop Model
Intercomparison (GGCMI; Elliott et al. 2015), which
derived planting windows from Sacks et al. (2010) and
Portmann et al. (2008, 2010). We round planting and
harvesting dates to whole months, with months included
only if crops were in the ground for the majority of days
(this would prevent over-representation of a month if
planting occurred on its last day, for example). For Ames,
Iowa, the average maize season corresponds to planting on
May 13" and harvesting on September 27th, so GCMs will
be selected based upon their projections of the May—
September period (MJJAS). In other cases it may be
desirable to utilize only a subset of the growing season,
particularly if anomalies in a given month are shown to
have a particularly strong impact on crop development.
As maize is often grown in the summertime for mid-
latitude farms and in rainy seasons within the tropics,
maize season results presented in the Results section are
consistent in representing the challenges faced by maize
farmers despite including results from different months in
different locations on the same map. Soil moisture in crop
models is often initialized shortly before planting, so we
do not include preceding months.

Integrated assessments that link together the economics
of multiple growing seasons in a given farming system
often benefit from the use of a consistent set of GCMs for
all crops. In these situations it is likely desirable to analyze
a growing season that covers all months when crops are in
the ground, as detailed in the Discussion section below.
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Delineating climate change quadrants

To identify fundamental classes of projected climate
change for a region during a specific time period and
RCP, we characterize an individual model’s projected,
location-specific temperature and precipitation changes
in terms of its deviation from the ensemble median. A
GCM'’s projections will therefore be relatively cool or
hot and relatively wet or dry. In this demonstration we
use the climate information from the GCM output’s
native grid boxes, although a similar procedure could
subset an ensemble of downscaled products and may be
advisable where there is substantial disagreement
between native projections and downscaled analyses
(Christensen et al. 2007). It is important to underscore
that these classifications are relative, as the ensemble
median is likely different than today’s conditions. This is
particularly important in the climate change context, as
nearly all GCMs project long-term warming trends
across the world (alternatively, “relatively cool” and
“relatively hot” may be classified as “warm” and “hot”). A
given GCM with low levels of overall warming may be
classified as “relatively cool” over a given region if it is
cooler than the median of all GCMs. Likewise, a given
GCM exhibiting a slight long-term drying trend may still
be “relatively wet” if the full GCM ensemble median is
projecting a more extreme drying trend. With a GCM’s
projection classified as either relatively hot/cool or rela-
tively wet/dry, this makes four basic quadrants of
change: “cool/wet”, “cool/dry”, “hot/wet”, “hot/dry”.

A fifth, “Middle”, classification is also introduced in
order to capture the models that represent the nexus of
these quadrants around the median of the ensemble.
Using the ensemble standard deviation (o) of growing
season temperature and precipitation changes as a
representation of this model spread, we capture these
models in a fifth quadrant including all models whose
temperature and precipitation changes are within + (p*o)
of the median, where p is a standard deviation factor de-
signed as a simple measure of spread in order to capture
approximately 1/5™ (20%) of all GCM projections. This
targets each quadrant to contain approximately the same
number of models to minimize the number of GCMs
that each quadrants selected model has to represent
(the selection of this GCM is described in the next
section). The use of standard deviations to define the
bounds of the “Middle” quadrant does not hinge on an
assumption that GCM projections are characterized by a
Gaussian distribution of individual projections for both
temperature and precipitation changes. Although a
Gaussian form is most common, bimodality and distri-
butions more precisely represented by other statistical
forms do occur (Tebaldi et al. 2005). The middle quad-
rants in in this study are defined using p=0.5 as it is a
close fit to the Mid-Century optimal values for RCP8.5
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and RCP4.5, as described in the Patterns of quadrant
weights section below. When communicating the rele-
vance of this quadrant to stakeholders it is important to
emphasize that this middle quadrant is not an invitation
to select only a single GCM. While this quadrant captures
the center of the distribution, on average it is not substan-
tially more likely than any of the other quadrants.

Each GCM may thus be classified as falling within a
particular quadrant of relative temperature and precipi-
tation change. As an example, the dashed lines in Fig. 1
show the delineation of the five quadrants of relative
temperature and precipitation change for the maize-
growing season in Ames, Iowa, under Mid-Century
RCP8.5 conditions. The color of the triangles shows the
classification of each GCM according to its quadrant of
relative temperature and precipitation change.

Choosing a representative model for each quadrant

It is not necessarily desirable that the model representing
a given quadrant be centered within the quadrant, rather
our desire is to pick a model that is in the center of the
GCMs that fall in this quadrant as its role is to represent
the types of change projected by these models. The
selection of a representative model is therefore aided by
calculating the quadrant center of mass for temperature
and precipitation changes; achieved by marking the mean
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temperature and precipitation change for all of the GCMs
that fall into a given quadrant (dots in Fig. 1). The models
that fall into the middle quadrant of Fig. 1, for example,
are centered slightly cooler and wetter than the median of
the entire GCM ensemble. This should be reflected in the
selection of a representative GCM for the middle
quadrant.

Although the quadrant centers of mass are the best
representations of GCMs within a given quadrant, these
growing season averages do not contain sufficient
information for many impacts assessments. To build the
types of scenarios needed for more complex assess-
ments, information is needed on the daily time series,
frequency of extreme events, number of rainy days, co-
variation of meteorological variables, sub-seasonal
variability, and other factors that cannot be gleaned from
this simple averaging. Multi-model average projections
can also wash out spatial and temporal patterns to a
point where they are not physically plausible. By selecting
a single model we end up with physically-consistent
climate information from a simulation that resulted in the
type of climate changes projected by GCMs in this quad-
rant. Drawbacks of this reliance upon a single model’s
physics are discussed in the Discussion section.

The first guess at a representative model for a given
quadrant is therefore the GCM whose temperature
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change and precipitation projection fall closest to the
center of mass of GCMs within that quadrant. A degree
of subjectivity is possible at the stage of representative
model selection, however, depending on three factors
that are worthy of extended consideration below:

(i) Uncertainty in model projections,

(ii) GCM biases related to major patterns of
atmospheric circulation

(iii) The sensitivity of a given system or assessment.

Model uncertainty may justify selecting a model other
than that which is closest to the quadrant center of mass
if an examination of the GCM spread reveals that the
center of mass was drawn far away from most GCMs by
an extreme outlier. For example, if a single model in-
creases precipitation by 300% while the precipitation
changes of the other models in a quadrant are limited to
20% gains or less, the model closest to the center of
mass will likely be the wettest of the non-outliers. In this
case it may make more sense to drop the outlier as a
candidate and select a model close to the center of the
remaining models.

Particular care must be taken in assessment regions
governed by major atmospheric circulation patterns or
seasonal cycles (IPCC 2010; Knutti et al. 2010a). The
most prominent examples are monsoons (e.g., in South
Asia, East Asia, Southwest North America, or West
Africa), the migration of the Inter-Tropical Convergence
Zone (ITCZ), and the seasonal cycle of sea-ice extent;
each of which can dominate seasonal precipitation and
temperature patterns for a given area. In these re-
gions it is possible that the GCM that is closest to
the quadrant center of mass misses the onset or exit
of a rainy season (as captured in observational prod-
ucts such as AgMERRA), leading to climate changes
for a given month that are based upon dry conditions
when observations reveal periodic rainfall.

To illustrate a potential motivation for subjective
selection based upon major atmospheric circulation
patterns, imagine a quadrant where GCM A and GCM
B both project nearly identical seasonal temperature and
precipitation changes but GCM A is slightly closer to
the quadrant center of mass. If GCM B has a clima-
tology that generally matches the observed seasonal
cycle of rainfall but GCM A reveals a delayed rainy sea-
son and thus a dry month when observations contain
substantial rain, two likely biases may manifest in GCM
A that would not be found in GCM B. First, rainfall
changes in excess of +50% are possible with even a
small change in rainfall, which could have dramatic
effects when imposed upon wetter conditions. Second,
temperature changes are likely biased toward greater
increase as excess energy that should drive latent heat
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exchanges is instead pushed into sensible heat due to mois-
ture limitations (resulting in a higher Bowen Ratio in
GCM A than GCM B). A comparison between observed
rainfall seasonality and GCM rainfall seasonality is thus re-
quired before selecting the representative GCM for a given
quadrant, with results potentially justifying selecting GCM
B despite GCM A being the closest GCM to the quadrant
center of mass. Within a given quadrant the approach is
therefore similar to the Reliability Ensemble Approach
(Giorgi and Mearns 2003; Xu et al. 2010) in its reliance on
a historical period comparison, although the focus is on
selecting a leading representative GCM rather than on
reducing the impact of a GCM through weighting.

A final subjective consideration may be necessary in
situations where the two GCMs closest to the quadrant
center of mass are likely to produce substantially differ-
ent results owing to the sensitivity of the system being
assessed. To illustrate this point, imagine that the hot
and dry quadrant contained GCM C and GCM D, each
of which is approximately the same temperature and
precipitation change away from the center of mass but
in opposite directions (e.g.,, GCM C is 1 °C warmer and
10% drier than the quadrant center of mass; GCM D is
1 °C cooler and 10% wetter than the quadrant center of
mass). In this example either GCM could be selected,
but GCM C is more highly recommended due to its
greater exploration of the sensitivity of the system to the
hot and dry changes that its quadrant represents. This
necessarily leads to slightly more extreme responses
(particularly where systems are non-linear), but this
information may be conveyed to stakeholders who can
respond accordingly.

Quantifying the weights of representative models for each
quadrant

Uncertainty in the ensemble of GCM projections is
quantified using the probability that projections fall into
any given quadrant. This follows an implicit assumption
that models are exchangeable and equally likely manifes-
tations of future climate, thus individual models are not
differentially weighted (Knutti et al. 2010a). A quadrant
weighting factor (W, 44ran) may therefore be calculated
by dividing the number of models that falls into a given
quadrant and by the total number of models in the
ensemble (W, uadrant = Nguadran/N1ota). These factors
may then be passed on to later phases of the integrated
assessment to represent model-based probability and
confidence, allowing eventual results to be aggregated
using a set of quadrant weight in factors that sum to 1.
As the goal is to represent the entire ensemble of GCMs
through selected GCMs, studies examining multiple
time period/RCP combinations do not require the same
subset of GCMs to be used for each combination. Ra-
ther, selecting the most representative GCMs and noting
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corresponding weights maintains more information
about the overall ensemble.

Evaluating skewness

In addition to carrying information about the probability
of particular classes of climate change, quadrant weights
also convey information about physical mechanisms
prevalent in projected climate changes for a given region
and season. The latter is recognizable as strong deviations
from the expected weights if the 29 members of the GCM
projection ensemble were distributed evenly across all five
quadrants (20% of models in each quadrant).

Diagonal skewness

“Diagonal skewness” is defined as existing when there are
substantially more GCMs falling into a particular diagonal
orientation of three quadrants than the 17.4 (60%) GCMs
that would be expected. Specifically, site projections are
considered to exhibit “hot/wet vs. cool/dry skewness”
when at least 22 (75%) of the GCMs fall in either the
hot/wet, middle, or cool/dry quadrants. Conversely, site
projections feature “hot/dry vs. cool/wet skewness” when
at least 22 (75%) of the GCMs fall in either the hot/dry,
middle, or cool/wet quadrants.

Extreme skewness

“Extreme skewness” is defined as existing when there are
substantially more (or fewer) GCMs falling into the middle
quadrant than the 5.8 (20%) GCMs that would be
expected. Specifically, site projections are considered “very
extreme” when 3 (10.3%) or less of the 29 GCMs fall within
the middle quadrant. This is approximately half of the
expected value the middle quadrant, and also means that
26 (89.7%) or more of the GCMs fall into the cool/wet,
cool/dry, hot/wet, or hot/dry quadrants. Site projections
are considered “Non-extreme” when 9 (31%) or more
models fall within the middle quadrant, which is 1.5 times
the number expected.

Results

Point-based sub-setting

The Ames, lowa, maize-growing season example dem-
onstrates the approach and reveals probabilistic informa-
tion about climate projections for the area (Fig. 1).
During the May-September maize-growing season the
29 CMIP5 GCMs project median temperature (T) rises
of 3.24 °C and 5% precipitation (P) increases. These
changes form the criteria for defining GCM projections as
being relatively hot (AT > +3.24 °C), cool (AT < +3.24 °C),
wet (P> +5% change), or dry (P < +5% change). A GCM
projecting increases in rainfall of 0-5% would therefore
still be considered “relatively dry” in comparison to the
29-member GCM ensemble despite not being drier than
the historical conditions (there is only one model
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projecting an increase in Ames precipitation that would
still be considered “relatively dry”). All GCMs (including
both the “relatively hot” and “relatively cool”) project tem-
peratures warmer than the current period.

The middle quadrant is defined using a range centered
upon the median of one standard deviation of projected
temperature (0.75 °C) and precipitation changes (11%).
GCMs that are within one half standard deviation in
both the temperature and precipitation change dimen-
sions are therefore considered to be in the “middle” of
the projection ensemble.

With the five quadrants defined using ensemble statis-
tics, we find that there are 8 GCMs classified as “cool/wet”
for the Ames maize-growing season (green triangles in
Fig. 1), 3 are “cool/dry” (blue), 4 are “hot/wet” (yellow), 9
are “hot/dry” (red), and 5 are “middle” (black). Using the
center of mass for projected changes in each quadrant
(noted as a dot in Fig. 1) as a target temperature and pre-
cipitation change that best represents each quadrant, we
can select five individual models to represent the broader
ensemble at this location and growing season (triangles
highlighted with gray edges in Fig. 1). None of these
models demonstrate mean biases in the historical
period that would justify elimination, and biases in
the baseline period are not associated with projected
changes (Additional file 1: Figure S1).

These five selected models may therefore be used to
drive further crop, livestock, and economic model
analysis at Ames as part of an integrated assessment.
The number of models within each quadrant may also
provide useful probabilistic insight that may be incorpo-
rated into final analyses. To illustrate the potential of
this information, imagine that the economic impacts of
both the hot/dry and hot/wet scenarios were particularly
worrying to a stakeholder. That stakeholder’s risk man-
agement may consider that 9 of the 29 GCMs (31%) fell
into the hot/dry category while only 4 of the 29 GCMs
(14%) projected hot/wet conditions. This probabilistic
information could also be used as weights to estimate
the expected value of an outcome (E(C)) across the full
29-member GCM ensemble based upon the outcome
(C) and quadrant weighting factor (W, ,.4/an:) of cool/
wet (cw), cool/dry (cd), middle (m), hot/wet (hw), and
hot/dry (hd):

E(C) = (ch * ch) + (Ccd * ch)
+ (C* W) + (Craw x W)
+ (Cha * Wha) (1)

In this way the Representative T&P GCM Subsetting
Approach encourages the system to be tested against the
types of changes that could happen while also providing
guidance about the changes that are more likely to
happen according to the ensemble of GCM projections.
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Fig. 2 Ames, lowa, scenarios of future, monthly, annual, and quarterly temperature (top) and precipitation rates (bottom) from each of the 29
CMIP5 GCMs for Mid-Century RCP8.5, along with current period values (black stars). Colors indicate the quadrant classification for each GCM

(green = cool/wet, blue = cool/dry, gray = middle, dark yellow = hot/wet, red = hot/dry)

To elucidate the Representative T&P GCM Subsetting
Approach’s effect on GCM selection in Ames, Fig. 2
shows simple future climate scenarios based upon
projected monthly mean temperature (Fig. 2a) and pre-
cipitation (Fig. 2b) for all 29 GCMs compared against
the historical observations. While all GCMs project
increasing temperatures, the “relatively warm” models
are on the upper end of the distribution throughout the
year, while the “relatively cool” models lie on the lower
end and the “middle” models fall in between. Future pre-
cipitation scenarios also separate upon the relatively
wet/middle/dry classification as expected, however there
is much more variation across months than was seen for
temperature given the larger coefficient of variation for
GCM projections of precipitation change. This leads to
examples where a “relatively wet” model may actually be
drier than a “relatively dry” model (e.g., where green
lines are below red lines in July) and also reveals that
“middle” models may actually be wetter than the ensem-
ble average in the beginning of the growing season and
drier than the ensemble average at the end of the season.
As GCM projections were classified according to the
May-September maize-growing season in Ames, it is
not surprising that the quarterly average temperature
and rainfall projections that overlap this season are
neatly sorted into cool/wet, cool/dry, hot/wet, hot/dry,
and middle classifications. The annual, JFM, and DJF

seasons, on the other hand, show the danger of selecting
a GCM subset based upon seasons that may have differ-
ent GCM characteristics than the season of application.
Although some of this sub-seasonal information is lost
in the selection of a GCM subset, for Ames the Repre-
sentative T&P GCM Subsetting Approach is able to cap-
ture the basic behaviors of the GCM ensemble.

Patterns of change

The process by which GCMs are classified into five
quadrants using the median and standard deviation of
temperature and precipitation change projections also
yields interesting information about the GCMs and the
simulated climate system. While there is an element of
subjectivity in the guided selection of representative
GCMs for each quadrant, the delineation of quadrants is
an objective process which can be repeated for all
regions. Below, we analyze the classification (described
in the Delineating climate change quadrants section) of all
29 CMIP5 GCMs listed in Table 1 for each 0.25° x 0.25°
grid box of AGMERRA over both the entire year and over
the maize-growing season as defined in the AgMIP
GGCMI (grid boxes without a planting date are omitted).

Median and standard deviations of projections
Quadrants are defined based upon the median and stand-
ard deviation across 29 GCMs of temperature and
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Fig. 3 Annual (left) and maize season (right) median change in (a, b) temperature (°C) and (c, d) precipitation (%); standard deviation (across 29
GCMs) of median change in (e, f) temperature (°C) and (g, h) precipitation (%). 2040-2069 RCP8.5 compared to 1980-2009 current period
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precipitation changes within a given season. Figure 3
shows these projections for the 2040-2069 (“Mid-Cen-
tury”) period under RCP8.5 for both the full year and the
maize growing season. Annual mean change patterns were
a focus of discussion by Flato et al. (2013), revealing prom-
inently increased rates of warming at high-latitudes where
the snow-albedo feedback is in full effect and longwave ra-
diation forms a larger proportion of the energy budget

(Fig. 3a). Warming is also stronger away from the coastal
buffering provided by the oceans’ higher heat capacity.
Precipitation patterns (Fig. 3c) tend to follow the “rich get
richer” rule of thumb described by Trenberth (2011)
whereby areas and seasons that are currently wet tend to
get wetter while areas and seasons that are currently dry
become drier. Median temperature change patterns are
similar for the full year and the maize growing seasons
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(Fig. 3b), with only slightly less warming during the maize
season over India and the Amazon and slightly higher
warming over Western Europe. Increased wintertime
precipitation that fed the annual increases in many mid-
latitude regions are absent in the spring and summer
maize growing seasons (Fig. 3d), leading to slightly more
drying or reductions in the wet signal in comparison to
the full year median projections (Fig. 3¢).

The standard deviation of temperature changes across
the 29 GCMs (Fig. 3e-f) show the largest values at high
latitudes, over the Himalaya Mountains, and in the
Amazon Basin. These are due in large part to model
differences in ice-albedo feedback, the resolution of
complex topography, and atmosphere-biosphere interac-
tions, respectively (Flato et al. 2013). The standard devi-
ation of temperature also tends to scale with median
temperature increase. Precipitation change is remarkably
consistent (Fig. 3g) except over the arid portions of
North Africa and Western Asia where even small
changes can lead to large percentage shifts in some
GCMs. These patterns are largely replicated in the maize
growing season (Fig. 3h), although standard deviations
are slightly higher when fewer months are averaged
together as individual models” monthly biases tend to be
larger than their annual bias.

Patterns of quadrant weights

Figure 4 presents the percentage of GCMs that fall within
each of the five quadrants for annual mean and maize sea-
son RCP8.5 climate change projections. Analysis across
time slices and RCPs suggests that the optimum standard
deviation factor p (that captures ~20% of GCMs within
the middle quadrant) increases slightly with climate
change as GCM uncertainty increases. The optimal p rises
from 0.453 in the Near-Term RCP8.5 to 0.560 in the End-
of-Century RCP8.5. The optimal p in the Mid-Century
RCP4.5 (0.503) and RCP8.5 (5.18) are quite close to 0.5,
which is an appealingly simple factor to convey to stake-
holders. Using p = 0.5 for the Mid-Century RCP8.5 results
in the middle quadrant containing 19.1% of models for
the annual period and 18.9% of models for the maize-
growing season. Despite an ability to optimize the
standard deviation factor p for various time periods, the
importance of this optimization is small compared to the
benefit of a simple definition of the middle quadrant that
is intuitive (the range of the quadrant is one standard
deviation in each direction).

Horizontal variation in quadrant weights reveals that
small-scale deviations (within a couple degrees latitude
and longitude) are typically small in comparison to emer-
gent large-scale patterns that reveal a disproportionate
number of GCMs in a given quadrant. Large-scale
patterns highlight meridional variation (e.g., a reduction in
hot and dry models at high latitudes for annual changes;
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Fig. 4i), major mountain chains and tundra (e.g, an
increase in the number of middle quadrant GCMs over
the Himalayas for annual changes; Fig. 4e), and semi-
arid zones (e.g., common deviations over Australia
and Southwestern Africa in many quadrants). This
indicates that the probabilities captured by quadrant
weights are not likely to vary tremendously over a region
less than a couple degrees latitude or longitude across
(which is typical of many impact studies) unless there is a
major shift in aridity or orography. The physical mecha-
nisms behind large scale patterns and resulting skewness
are highlighted in the next section.

The large-scale patterns of quadrant weights are quite
similar between the annual and maize season. The most
striking differences are a result of the maize-growing
area not including high-latitude regions that stand out
in the annual quadrant weight maps as described above.
More subtle differences are also apparent over the
maize-growing regions, which tend to be characterized
by slightly higher cool/wet and hot/dry weights at the
expense of cool/dry and hot/wet weights (over the
Midwestern United States and India, for example; Fig. 4b,
d, h, j). These subtle changes between the annual and
maize distributions are substantial in the aggregate, as
noted in the ~3% shift from cool/dry to cool/wet
quadrants and corresponding ~3% shift from hot/wet to
hot/dry quadrants (Table 2). It is also not surprising that
more GCMs fall into the wet quadrants than the dry
quadrants, as the percentage change metric used to de-
fine quadrants is not limited in its increase but cannot
decrease by more than 100%.

Patterns of skewness

The shifts toward hot/dry and cool/wet quadrant
weights in the maize areas and season is a manifestation
of increasing hot/dry vs. cool/wet skewness. Although
the ~3% shifts are small compared to what is possible at
a single point, deviations to that extent on the global
average indicate a powerful signal. Figures 5a, b provide
a useful illustration of the skewness represented in
Table 2, showing more maize-season weight in the hot/
dry vs. cool/wet diagonal (65.6% of all GCMs) than in
the hot/wet vs. cool/dry diagonal (53.2% of all GCMs).
In contrast, the annual average of all land areas repre-
sented by AGMERRA shows a lack of noteworthy diag-
onal skewness (60.2 and 58.9% of GCMs along the
respective diagonals). While a precise determination of
the physical causes for these shifts requires analysis be-
yond the scope of this study, patterns of skewness high-
light mechanisms worthy of further study.

An understanding of the geographical patterns of diag-
onal skewness (Fig. 6a, b) suggests an explanation for the
overall increase in cool/wet vs. hot/dry diagonal skew for
the maize-season. While climate change projections for
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Fig. 4 Percentage of models from the 29-member CMIP5 GCM ensemble falling in each quadrant for annual (left) and maize season (right). a Relatively
cool/wet - annual. b Relatively cool/wet - maize. ¢ Relatively cool/dry - annual. d Relatively cool/dry - maize. e Middle - annual. f Middle - maize.
g Relatively hot/wet - annual. h Relatively hot/wet - maize. i Relatively hot/dry - annual. j Relatively hot/dry - maize

most of the world are not substantially skewed, pockets of
hot/dry vs. cool/wet skewness appear over many semi-arid
regions as well as over the Amazon Basin. To understand
this skewness in climate change projections it is useful to
consider that energy added to a given land surface is
forced primarily into either sensible (Qj) or latent (Q,)
heat fluxes, which are commonly related via the Bowen

Ratio (B; defined as B = Q,/Q,). Over semi-arid areas B is
high (there is very little surface moisture for evapotrans-
piration), so excess energy drives mostly sensible heat flux
and therefore the models projecting drier conditions also
tend to project the largest temperature increases. Skew-
ness over the Amazon reflects the tendency of some
GCMs to dry out the Basin considerably (Collins et al.
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Table 2 Percentage of 29 CMIP5 GCMs that fall into relative
temperature and precipitation change quadrants for Mid-Century
(2040-2069) RCP8.5

Quadrant Annual changes  Maize-season changes over
over all land areas  all maize-growing areas

Relatively Cool and Wet 20.3% 23.0%

Relatively Cool and Dry  18.0% 15.3%

Middle 19.1% 18.8%

Relatively Hot and Wet ~ 21.8% 19.1%

Relatively Hot and Dry ~ 20.8% 23.8%

Quadrant weights averaged accounting for diminishing area of grid boxes with
higher latitude
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2013). This leads to a local warming enhancement
through a dramatic increase in sensible heat flux (and thus
an elevated B). The annual maps also show a tendency to-
ward the opposite skew (hot/wet vs. cool/dry) over the
highest latitudes and elevations. These regions feature a
low B with precipitation typically limited by moisture
recycling (as warm air evaporates surface moisture) and
moisture flux convergence (Ruane and Roads 2008); both
of which increase with warming temperatures. GCMs that
project higher temperatures in these regions therefore
typically also project larger increases in precipitation.

The increase in maize skewness likely comes from the
co-location of maize-growing areas with frost-free

a Average Global Annual
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Fig. 5 Representation of quadrant weights (denoted as radius of circle in each quadrant) for (a, b) global average and (c-f) examples of
characteristic types of skewness. Examples drawn from (c) Massachusetts, USA (annual); (d) Ames, USA (maize season); (e) Taymyr Peninsula,
Russia (@annual); and (f) Southern France (maize season). Note that panel d differs from Fig. 1 due to differences between in situ observations and
AgMERRA as well as the location of the observational site vs. the AQMERRA grid box
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b Diagonal Skewness — Maize Season

Hot/Dry vs. Cool/Wet

d Extreme Skewness — Maize Season

Non-Extreme

climates and seasons containing moderate amounts of
rainfall. Due to temperature constraints maize is typically
not grown at high-latitudes and is not in the ground
during the wintertime storms that deliver a large portion
of seasonal rainfall to the dry, primarily mid-latitude re-
gions. Maize is therefore concentrated where soil moisture
is variable and prevailing weather patterns associate rain-
fall with cool and wet air masses (typical of a mid-latitude
summer) rather than warm and wet air masses (as are
often found in wintertime or polar cyclones). Increased
temperatures and energy are projected to raise global
evapotranspiration demand, however some maize-growing
regions will not be able to keep up with the elevated
demand posed by the warmest GCMs and will therefore
shift toward drier conditions. This in turn raises B,
increasing sensible heat (and local temperatures) and lead-
ing to hot/dry vs. cool/wet skew such as that we saw over
the Amazon for annual changes. The maize season maps
do not include the winter season and high-latitude areas
constrained by surface moisture and energy, leading to
more instances where the warmest models increase
evapotranspiration and drive wetter conditions (hot/wet
vs. cool/dry skew). Figure 5c illustrates hot/wet vs. cool/
dry skewness using an annual grid box in Massachusetts
that is dominated by wintertime precipitation, while Fig. 5d
uses the Ames maize-growing season from the gridded
analysis to demonstrate hot/dry vs. cool/wet skewness.

The middle quadrant of both the globally-averaged
annual and maize change distributions contain similar
weights (19.1 and 18.8%, respectively for the Mid-
Century RCP8.5), but some regions do exhibit extreme
skew (Figs. 6¢, d). Non-extreme skew is common in
northern Siberia, where median temperature and pre-
cipitation changes are both among the highest on the
planet. Temperature changes, in particular, have a very
high standard deviation owing to model differences in
climate sensitivity and local factors like the snow-ice
albedo feedback. Non-extreme skew therefore is a de-
scription of the spread of GCM projections rather than
the extremity of the GCM projections themselves. In
fact non-extreme skew is found in places where standard
deviation of GCM projections is so large due to outliers
that the middle quadrant expands to capture many of
the other GCMs. Figure 5e displays an example of this
non-extreme skew near Lake Tamyr, Siberia, where the
middle quadrant contains a disproportionate number of
GCMs. Non-extreme skew is also seen where variations
in the GCMs’ resolution of orography cause slightly lar-
ger standard deviations of temperature and precipitation
change, including the highly productive plains and
foothills just south of the Himalayas. Regions displaying
very extreme skew (e.g., Fig. 5f) tend to be patchy but
are most prevalent in Africa and Eastern Europe. Very
extreme skew occurs when the GCMs tend to separate
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evenly into each of the outer quadrants while leaving
very few models in the center of the distribution. In
these regions GCMs show patterns of temperature and
rainfall responses that are bimodal or disjointed in
another way (potentially due to the acceleration of
temperature or precipitation shifts beyond a given thresh-
old or associated with a particular regime shift).

Re-constructing a GCM’s change patterns using quadrants
By classifying each GCM into a relative change quadrant
for the global 0.25x0.25 grid, we can illustrate climate
change patterns for each GCM relative to the 29 member
CMIP5 ensemble. Figure 7 shows the GISS-E2-R and
UKMO HadGEM2-ES annual change quadrant
classifications for the mid-century RCP8.5, mid-century
RCP4.5, and near-term RCP8.5. It is immediately evident
that HaddGEM2-ES is among the warmer models for nearly
all locations, while GISS-E2-R tends to be relatively cool
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over much of the land area. This is a reflection of
HadGEM2-ES’s climate sensitivity (4.6 °C) being among the
highest in Table 1 while GISS-E2-R’s (2.1 °C) is among the
lowest. Both models are characterized by patterns of quad-
rant classifications, for example HadGEM2-ES’s relatively
wet designation over the highest latitudes in comparison to
relatively dry designation over Eastern Europe, as well as
the GISS-E2-R’s relatively hot/dry projections over much of
Africa and Latin America that stand out from the overall
cooler projections. The spatial coherence and general
consistency of these patterns across time periods and RCPs
reveals distinguishing tendencies of the models and serve
as an additional verification of the basic stability of the
quadrant designation approach. It is not surprising that the
patterns are not perfectly consistent, as shifts in any
model’s circulation can potentially change the median or
standard deviation of projections for a given region.
[Mid-century annual RCP8.5 classifications for each GCM

a Mid-Century RCP8.5 — GISS-E2-R

b Mid-Century RCP8.5 — HadGEM2-ES

Cool/Dry

RCP4.5; and (e, f) near-term RCP8.5

Middle

Fig. 7 Quadrant designation for GISS-E2-R (left) and HadGEM2-ES (right), over the time period of the (a, b) mid-century RCP8.5; (c, d) mid-century

Warm/Wet

Warm/Dry
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are provided in Additional file 1: Figure S2, revealing that
no GCM overwhelmingly falls into the middle quadrant].

The global maps of GCM quadrant classifications also
enable large-scale analysis through a recombination of re-
gional integrated assessment results that were conducted
using representative GCMs. For example, the first phase
of AgMIP regional integrated assessments in sub-Saharan
Africa and South Asia focused upon distributed regions
linked together through the use of 5 common GCMs for
all sites (Ruane et al. 2015b; Kihara et al. 2015; McDermid
et al,, 2015b). This guaranteed consistency in continent-
wide analysis but also incorrectly assumed that the 5
selected GCMs adequately sampled projected climate
changes for each region. In future phases of this work the
Representative GCM approach will be used to capture the
key classes of climate change within each region, provid-
ing more useful regional information. Results from these
analyses will then enable continent-wide analyses linked
either by quadrant (e.g., impact of relatively cool/wet
climate scenarios on Africa) or by GCM (e.g., impact of
HadGEM2-ES over Africa). For the latter analysis the
impact pattern of the HadGEM2-ES can be constructed
by identifying the type of change projected by that GCM
over a given region and then utilizing the corresponding
representative GCM from the regional integrated analysis.
Through this relatively inexpensive approach one could
examine the larger-scale patterns of change (which affect
international trade, for example) across many GCMs while
maintaining practically representative subsets for analysis
within each region.

Discussion

Benefits of representative T&P GCM subsetting approach
The Representative T&P GCM Subsetting Approach pro-
vides criteria for the selection of a GCM subset that is:

e Practical in the number of resources required
(reducing the CMIP5 GCM ensemble by ~1/6™ to
free up resources for other elements of a regional
integrated assessment);

e Defined according to changes in the season and
variables that most affect the system of interest;

e Characteristic of the major classes of climate change
(relatively cool/wet, cool/dry, hot/wet, hot/dry, and
middle) projected by the GCM ensemble;

e Cognizant of potential outliers that may be evidence
of substantial biases;

e Connected to weights that denote the ensemble-based
probability of GCM projections that are similar to
each GCM within the subset;

e Generalizable through standard definitions;

e Capable of utilizing local observations or being built
upon gridded climate products (such as AGMERRA);
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o Transferable from region to region and sector to
sector;

e Able to be recombined for larger-scale analyses;

o Generally stable across alike geographical areas, time
periods, and RCPs; and

e Relatively simple to communicate to stakeholders.

Limitations and areas for continuing development

By definition, any subset of GCMs is a reduction in
information compared to the full ensemble and therefore
subsetting should only be undertaken when limited
resources are required elsewhere in an integrated assess-
ment process. A clear understanding of assumptions and
limitations is therefore necessary when subsetting is
necessary.

The Representative T&P GCM Subsetting Approach’s
reliance on mean temperature and precipitation change
projections will not account for differences in other
climatic properties that may affect the system of inter-
est (climate models have many degrees of freedom).
Agricultural outcomes, for example, may be particularly
sensitive to changes in the number of rainy days or the
sub-seasonal breakdown of temperature increases (heat
waves are particularly damaging during key plant develop-
ment stages). Ruane et al. (2013) found that scenarios
featuring only growing season mean temperature and pre-
cipitation changes slightly reduce the range of simulated
yield changes compared to scenarios containing additional
information about monthly temperature and rainfall
changes. That representative models are similar to other
models within their quadrant on variables other than
growing season mean temperature and precipitation is im-
plicitly assumed but worthy of further study. It is likely
that close relationships exist (e.g., mean rainfall with
relative humidity, cloud cover, or the number of rainy
days) but that other variables may be more independent
(e.g., interannual variability, the frequency of extreme
events). The subset approach only selects GCMs for
further analysis, and therefore the overall importance of
variable changes other than the seasonal mean depends
on the choice of a scenario generation approach that
accounts for these changes as well as the sensitivity of the
integrated assessment models to these changes.

Although the Representative T&P GCM Subsetting
Approach can be generalized and applied objectively,
subjective considerations related to the selection of spe-
cific representative GCMs (described in the Choosing a
representative model for each quadrant section) may be
very important in some regions. As an illustration,
consider a case in which GCM E falls nicely near the
center of mass as defined by other GCMs within the hot/
dry quadrant but each of the other GCMs lies quite far
from that center of mass. If GCM E contains substantial
bias in comparison to historical observations of seasonal
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temperature or precipitation, an additional objective cri-
terion is needed to decide at which point we accept GCM
E rather than selecting the next-best GCM and therefore
relying on a GCM that is less representative of the mean
growing season climate changes.

Systems with multiple crops require special attention
in defining a growing season in which to evaluate
projected changes in temperature and precipitation and
select representative GCMs. The Rice-Wheat systems of
the Punjab in Pakistan, for example, are famously
productive in utilizing monsoon rains during the wet
(Kharif, May-October) season and harnessing the power
of irrigation in the dry (Rabi; November-April) season
(Ahmad et al. 2015). The economics of this rice-wheat
system is better assessed using a single driving climate
model rather than attempting to stitch together rice
impacts simulated with one GCM and wheat impacts
simulated by another. In this situation it is better to
define the growing season as encompassing all months
in which rice and wheat are cultivated, however investiga-
tion of the individual seasons is informative. Projections of
temperature and precipitation change for the individual
Kharif and Rabi seasons may distinguish models that are
consistently within a given quadrants from those with
different behaviors from season to season; information
which could be incorporated into the selection of repre-
sentative GCMs or passed on to the final risk assessment.

Objective rules for dealing with outliers would also
benefit those seeking to automate the GCM selection
process. These are most prevalent in the precipitation
change dimension, and therefore several approaches
merit further study. A first approach would be to cap
precipitation changes (below 25% or above 200% of
present day rainfall for any given month, for example) in
order to limit their influence on the quadrant center of
mass and the overall standard deviation of the GCM
distribution. An alternate approach would be to fully
eliminate GCMs where precipitation changes exceeded
given thresholds, utilizing the remaining models within a
quadrant to form a center of mass and select a representa-
tive GCM. This is often necessary in arid and monsoon-
driven regions, as mismatches between the GCM and
observed rainfall can lead to implausibly large percentage
increases for months at the beginning or end of distinct
rainy seasons (Additional file 1: Figure S3 presents the
number of models that exceed a high threshold for each
region). In both approaches the outlier could still be
considered in the weighting of the quadrant, although
examples are possible where large biases in a wet month
that is dry within a GCM actually shift the growing season
from a dry to a wet classification. Strong connections
between a GCM’s baseline temperature and precipitation
biases with that GCM’s eventual relative change quadrant
may also suggest that dynamical or thermodynamical
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biases are affecting projections for a region (potentially
due to sea ice/snow cover, monsoon circulations, or soil
moisture anomalies), indicating the need to disqualify par-
ticularly egregious models (Additional file 1: Figure S1
shows that this is not the case for the rainfed maize season
in Ames).

Any objective approach must also be careful to
recognize that some extreme regional changes are quite
plausible and grounded in strong model physics. These
may be of utmost interest to stakeholders and should
not be too quickly dismissed. For example, a maize
farmer in Iowa may be more interested in the probability
that his crop fails (an event at the distributional tail)
than the expected future yield (a value in the center of
the distribution). A stakeholder that is interested in
simply stress-testing a system may therefore be more in-
terested in selecting representative GCMs that bound
the projected impacts than in establishing a probability
of occurrence.

Very rarely (<2.5% of grid boxes for annual; <1% for
maize) diagonal or extreme skew in a given location is
so dramatic that an entire quadrant will be devoid of
any GCM. For these locations it would be consistent to
either ignore this quadrant (if its weight is 0% than it is
not worth simulating) or define an additional quadrant
to separate GCMs within the most heavily weighted
quadrant.

Extensions

The methods and analyses above were based upon an
effort to select a 5-GCM subset from a broader 29-GCM
CMIP5 ensemble, but different resource levels or systems
of focus may call for larger or smaller subsets. In terms of
selecting a larger number of GCMs, the next logical step
would be to select 9 GCMs representing a 3x3 matrix of
temperature and precipitation changes (allowing a quad-
rant for “hot/middle” changes, for example). Alternatively,
a third dimension of analysis could be added, for example
the standard deviation of temperatures (to emphasize ex-
treme events) or end-of-season mean rainfall (to emphasize
the important grain-filling stage of crops). This would also
select 9 GCMs, as combinations of relatively high or low
values for each of the three dimensions defines 8 quadrants
in addition to the middle quadrant. While there is an
appeal in using more complex statistics such as 9™ per-
centile rainfall levels or the number of consecutive dry days
(see, e.g., Peterson 2005), these values are not well simu-
lated in many GCMs and there is resulting risk of deter-
mining selection on areas of GCM weakness. If an even-
numbered subset is desired to avoid focus on a central
scenario, the next reasonable level would be 8 GCMs,
forming outer (cool/wet, cool/dry, hot/wet, hot/dry) and
inner (middle/cool, middle/hot, middle/wet, middle/dry)
quadrants. Alternatively, assessments of farm systems that
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are carefully irrigated to manage water stress may only be
interested in selecting 3 representative GCMs for high,
middle, and low temperature changes (likely closely
related to their climate sensitivities). Irrigated farms may
also prefer to use solar radiation change as an alternative
dimension for quadrant analysis.

Other forms of selecting GCMs to represent classes of
change are also possible, including the definition of alter-
native quadrants or more complex cluster methodologies
potentially incorporating more variables. As sub-setting
always loses information contained in the complete
ensemble, many of the same challenges addressed above
remain, including the potential that individual GCMs do
not fall nicely into clusters or quadrants in some regions.
More complex methods may become additionally prob-
lematic, however, if they are too complex for dissemin-
ation among partners from the variety of disciplines often
included in integrated assessments. The temperature and
precipitation quadrant approach described in this study is
bolstered by its ease of generalization and communication
with stakeholders.

On the global scale a quadrant approach defined by mean
temperature and precipitation change is hindered by the
globally-closed hydrologic cycle, which tends to respond to
increasing temperatures by increasing the overall levels of
both evapotranspiration and precipitation. As integrated
assessments are dependent on the resolution of regional
impacts, mean precipitation changes are not a sufficient
metric as GCMs balance precipitation increases in one
region with compensating drying in other areas. A better
metric to gauge hydrologic impacts at the global scale is
therefore the mean absolute percentage change of precipi-
tation, which is indicative of the way that climate change
strengthens and alters the geographical patterns within the
water cycle. Global average temperature changes are closely
related to the GCMs’ climate sensitivities listed in Table 1.
In the process of selecting GCMs for a global study it would
also be useful to examine the annual quadrant classifications
in important regions of interest, as presented in Additional
file 1: Figure S2. Further validation exercises that explore the
extent and ramifications of regional temperature and precipi-
tation biases within the GCMs would also be quite useful for
a wide number of climate applications (Ruane et al. 2016).

Representative GCM selection for a national or regional-
level integrated assessment is challenging in that it is
unlikely that a single set of GCMs can represent the classes
of change for all points within a large domain. Sub-regional
assessments may be recombined for larger-scale evaluation
as described in the Re-constructing a GCM’s change pat-
terns using quadrants section, but in cases where eco-
nomic analyses span the broader region it is important
that inputs are consistent. In this situation an initial first
step would be to perform quadrant analysis at a distrib-
uted network of sites within the domain and then look for
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particular GCMs that are suitably consistent representa-
tives of a given quadrant. The final selection of GCMs
may prioritize accurate representation of the GCM
ensemble over key sub-regions (e.g., a country’s breadbas-
ket in an agricultural study) and can also note which sub-
regions may be missing a representative for a quadrant
within the selected GCMs.

Summary and next steps
The Representative T&P GCM Subsetting Approach
provides a practical way to reduce computational and
analytical resources in integrated assessments of climate
change impacts. Although information is lost in any
subsetting of GCMs, this efficient approach captures the
basic combinations of important climate change factors
and their relative probabilities in order to enable stake-
holder risk management. The core of the approach
involves the analysis of major types of climate changes
likely to affect a given sector (illustrated above for agri-
culture), with the goal of selecting GCMs that represent
each major type of change and are associated with prob-
abilistic information related to the broader ensemble. In
some cases this analysis may lead to further stakeholder
inquiry as to the extremes possible within a given quad-
rant, which could form the basis for continuing study.
The process of classifying GCMs relative to the wider
ensemble of projected temperature and precipitation
changes for a given region also provides useful insight
into the sensitivity of these variables and the coherence
of regional patterns across space, time, and greenhouse
gas scenario. GCMs generally demonstrate noteworthy
consistency, with some regions also demonstrating
various forms of skewness in the full ensemble that are
indicative of climatic processes or model uncertainty. As
public attention following accords at the 21°* Conference
of Parties in Paris shifts increasingly toward the imple-
mentation of mitigation and adaptation strategies rooted
in climate applications research, this type of analysis
may help in the selection of GCM subsets covering the
range of regional changes needed to increase resilience.

Additional file

Additional file 1: Figure S1. Rainfed maize growing season temperature
and precipitation climatologies for Ames, lowa, including observations and
all GCMs with colors signifying their respective relative projected change
quadrants for mid-century RCP8.5. Eventual selected GCMs are highlighted
with gray borders. Note that historical period biases are substantial
(particularly for precipitation), but are not a strong indicator of projected
change quadrants for this site. This finding suports the Representative T and
P sub-setting approach’s basis on relative changes in the future period of
focus. Figure S2. Geographic pattern of designated quadrants of each of
the 29 GCMs — annual, for Mid-Century RCP8.5. These maps provide a quick
overview of the relative regional behavior of each GCM projection (compared
to the full ensemble). Figure S3. Percentage of GCMs where precipitation
changes projected for the RCP8.5 mid-century exceed 100% for (a) annual
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average and (b) maize growing season, indicating that there may be a
mismatch between modeled and observed precipitation leading to excess
scenario rainfall in one or more months. (PDF 1.07 mb)
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