Though progress is being made, approximately 11% of the world’s population (783 million people) does not have access to safe drinking water (UN 2012). Sustainable water infrastructure systems are needed that equitably and cost-effectively provide drinking water to users while minimizing negative impacts on ecosystems. To effectively address human needs, the design and layout of these critical infrastructure systems must be customized to reflect local customs and preferences. All three sets of considerations (economic, ecological, and social) must be simultaneously considered in the planning and design of sustainable water systems.
Though such infrastructure decisions can be made solely based on “expert knowledge,” more robust designs are developed with intensive stakeholder input. The participation of local stakeholders in the conceptualization and design of infrastructure projects acknowledges the “stake” that the intended beneficiaries have in the project’s outcome, and increases the likelihood that these investments will directly address local needs. Though stakeholder participation is now widely recognized as essential in both developed and developing nation contexts (Greenwood and Levin, 1998), it is particularly important after disasters, when there are often strong countervailing forces seeking quick-fixes (Kennedy et al. 2008;Lawther 2009;Leon et al. 2009).
This study investigates stakeholder preferences regarding water infrastructure planning in Leogane, Haiti (population ~300,000), a town situated at the epicenter of the January 2010 earthquake, and about 30 km west of the capital, Port-au-Prince. The motivation for the study is the unprecedented level of aid pledged for reconstruction after the earthquake, and the opportunity it appeared to present to significantly improve access to water in Haiti. To a country that had never received more than $500 million in foreign direct investment in any given year, a total of about $10 billion (BBC 2010) was pledged by individual donors and the international community after the earthquake. The Reconstruction Action Plan earmarked $160 million (or approximately 4% of its first 18 months of reconstruction expenditures) toward the goal of achieving 60% drinking water access, and 58% sanitation access in metropolitan zones.
Through interactions with stakeholders in this one city, our overall goal was to elicit local perspectives about how the reconstruction funds earmarked for water and sanitation might be most appropriately invested. We sought not to track specific investments, but rather to inform reconstruction decisions regarding water with local knowledge. In this paper, we focus on water systems, and specifically the degree to which local stakeholders expressed a preference for a centralized versus a decentralized approach to post-earthquake re-building of water systems. The present study is part of a larger planning study in which we also considered sanitation infrastructurecsubmitted), and preferences with respect to system management and ownership (Galada et al., 2013).
Before introducing the research methods, a general overview of centralized and decentralized water systems is provided, followed by a general description of the geographic and infrastructure setting in Leogane.
Overview of centralized and decentralized water infrastructure options
Centralized and decentralized approaches apply different spatial strategies, but also differ in terms of their associated costs, operation and management, latent vulnerability to hazards, and expandability potential. In many urbanized regions of the industrialized and post-industrial world, drinking water is sourced and distributed in a centralized fashion; i.e. source water is made potable (e.g. treated) at a centralized treatment plant and then delivered to users through a pressurized distribution system (Kyessi 2005). Though the most costly component of such systems is typically the excavation required to lay the pipes (USEPA 1991), centralized distribution systems are often considered the only way to provide water and sanitation services to densely populated urban areas where local water sources are often contaminated and unsuitable for consumption even after treatment. The requirement that cities served by such systems have sustained access to relatively high quality, reliable, extra-urban source water supplies, however, carries the potential to create upstream/downstream conflict, especially as urban growth infringes on source water watersheds.
While the planning, design, and construction of large centralized networks is often subsidized by the public or private sectors, recurring operation, maintenance, and repair costs are paid with revenues generated by user fees, often administered by a local governmental, quasi-governmental, or private body. The regular upkeep and repair of pressurized distribution systems requires specialized machinery and skilled labor, and may involve excavation, requiring that such infrastructure networks be accompanied by a trained team of water utility personnel.
Additionally, and because of the high cost associated with laying and maintaining pipes, centralized water distribution systems are typically designed to serve high density population centers only. The user costs associated with extension of the network into low density regions is typically much higher than the cost of providing exurban residents with a decentralized local water source (e.g. a protected well). As of 2010, only about 4% of the world’s urban population relied on unimproved water supplies, compared to 19% of the rural population (UN 2012).
Though their benefits (e.g. improved public health, environmental protection, streamlined operations, economy of scale, reliability) are well known, centralized water and sanitation systems are not always feasible or appropriate. In developing world settings, for example, where financing or other capital funds may not be readily available, the start-up costs to build a centralized water or sanitation system can be prohibitively high (Wilderer and Schreff 2000), and rural populations may lack a reliable source of energy for well pumps. In addition, if an economically stable user base is not present, the revenues needed to pay for recurring operation and maintenance costs cannot be guaranteed, a situation that can lead to gradually deteriorating system performance. Since damage to critical nodes or segments can compromise the functionality of the entire system, centralized infrastructure can also be vulnerable to environmental hazards such as earthquakes or hurricanes. In contrast to industrialized settings, where, on average and as a percentage of household income, the cost of a protected well or other decentralized water supply system is bearable for exurban residents, in developing world settings rural populations often rely on unimproved sources (UN 2v012).
In such contexts, there has been growing interest by infrastructure experts, researchers, and international lending institutions in applying funds earmarked for improving water access in a decentralized manner (Wilderer and Schreff 2000). In a broad sense, decentralized infrastructure replaces centralized treatment and distribution systems with a network of smaller, individual facilities (e.g. point-of-use or on-site treatment, no centrally managed pipe systems). From a management standpoint, it replaces a team of mainly utility personnel with grass roots networks, which could include local water committees, and municipal (as opposed to regional or national) decision-making bodies. Decentralized water sources are accessed by users either through a large number of relatively small distribution systems, or directly at the point-of-use (Peter-Varbanets et al. 2009). When evaluated on per user basis, investments in decentralized water systems in rural areas are as cost-effective as in urban settings.
More generally, and compared to centralized systems, decentralized systems can have lower maintenance costs, can require fewer upgrades, and be installed incrementally in response to actual demand (Venhuizen 1991). Decentralized systems have independent components, making the system less vulnerable to systemic failures, hazards, and extreme environmental events (Venhuizen 1991). Additionally, expansion of a decentralized system can be easier because it is not contingent upon availability of treatment plant capacity, as is necessary in expansions to centralized systems (.Mintz et al2001). A high level of service, however, is contingent upon the consistent availability of labor to operate and manage the entire decentralized network (Wolff and Gleick 2003).
Geographic and infrastructure setting
The commune of Leogane is distributed across a coastal plain and mountainous region located approximately 30 km to the west of Port-au-Prince. Approximately one-third of the commune’s 300,000 people live in the city’s urban center. The ~114 km2 coastal plain is underlain by a productive shallow unconfined aquifer that typically can be accessed at depths of 5–10 meters below the surface. At greater depths (25–30 meters) a confining layer separates the unconfined aquifer from a deeper confined one. Two rivers bisect the commune and are accompanied by a multitude of smaller tributaries, irrigation canals, and drainage ditches.
The climate is marine tropical with a hot and humid summer and a cooler and drier winter season. There are two distinct rainy seasons; one April to June the other October to November. Leogane has no climate station but because it has similar topography, and is only ~30 km west of Port-au-Prince, its weather can be characterized as similar to that of the capital (average annual rainfall = 1370 mm, daytime temperature 25-30C). Haiti is hit, on average, by one cyclone (defined as a climatic event with windspeed over 250 km/h) with devastating effects every five years (Aquastat 2000).
Portions of the city of Leogane were, at one time, supplied with drinking water by a centralized gravity-driven distribution system built with international aid money in the early 1980s. The system was fed by an artesian spring on the eastern side of the Momance River. A main distribution line was buried in the river bed and resurfaced on the western side before continuing under the main road to Leogane’s urban center, where it subdivided into a gridded distribution system covering about a 1 km by 1 km square region. Two smaller lines branched off the main line, one going to the north (the Matthieu branch) and one to the south (the Belle Fortune branch). Another small line branched off the downtown service area to serve Ca Ira in the northwest. In addition to this centralized distribution system, a smaller subsidiary system fed by another artesian spring supplied drinking water to an unknown service area. While these distribution pipes may have sustained additional damage due to the earthquake, the system had actually been rendered inoperable during the 2008 hurricane season when floods washed out the river bed and destroyed the piping buried in the bed. At the time of this study, responsibility for the defunct system was being transferred from the Service National d’Eau Potable, the national water utility located in Port-au-Prince, to a regional office of the Direction Nationale de l’Eau Potable et de l’Assainissement, as part of the decentralization and reorganization of the water sector in progress throughout Haiti under the terms of a 2009 national water law.
The goal of this study was to elicit local perspectives on how reconstruction funds could be used to improve post-earthquake access to water services in Leogane. By documenting local preferences, the intention was to assist the reconstruction effort, namely by helping foreign donor agencies with the financial wherewithal to make key infrastructure investments in Leogane better understand local needs. Assessing whether local opinion favors a decentralized or centralized strategy for meeting the city’s water needs from afar is difficult. Though evidently Leoganais have coped with informal decentralized infrastructure for some time, at the time of this study post-earthquake reconstruction was viewed by many in Haiti as an opportunity to “build back better” (Fountain, 2010). Accurate or not, a higher quality of life is associated by some with centralized systems. To the extent that they are more reliant on local management structures, decentralized strategies could be viewed favorably by individuals with a low level of confidence in the government’s ability to effectively solve development problems.